Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Electrophysiol ; 33(3): 380-388, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35018687

RESUMO

BACKGROUND: Local impedance (LI) can indirectly measure catheter contact and tissue temperature during radiofrequency catheter ablation (RFCA). However, data on the effects of catheter contact angle on LI parameters are scarce. This study aimed to evaluate the influence of catheter contact angle on LI changes and lesion size with two different LI-sensing catheters in a porcine experimental study. METHODS: Lesions were created by the INTELLANAV MiFi™ OI (MiFi) and the INTELLANAV STABLEPOINT™ (STABLEPOINT). RFCA was performed with 30 W and a duration of 30 s. The contact force (CF) (0, 5, 10, 20, and 30 g) and catheter contact angle (30°, 45°, and 90°) were changed in each set (n = 8 each). The LI rise, LI drop, and lesion size were evaluated. RESULTS: The LI rise increased as CF increased. There was no angular dependence with the LI rise under all CFs in the MiFi. On the other hand, the LI rise at 90° was lower than at 30° under 5 and 10 g of CF in STABLEPOINT. The LI drop increased as CF increased. Regarding the difference in catheter contact angles, the LI drop at 90° was lower than that at 30° for both catheters. The maximum lesion widths and surface widths were smaller at 90° than at 30°, whereas there were no differences in lesion depths. CONCLUSION: The LI drop and lesion widths at 90° were significantly smaller than those at 30°, although the lesion depths were not different among the 3 angles for the MiFi and STABLEPOINT.


Assuntos
Ablação por Cateter , Animais , Ablação por Cateter/efeitos adversos , Catéteres , Impedância Elétrica , Desenho de Equipamento , Suínos
2.
PLoS One ; 19(6): e0305208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865368

RESUMO

When scanning a document printed on both sides by using an electronic scanner, the printed material on the back (front) side may be transmitted to the front (back) side. This phenomenon is called show-through. The problem to remove the show-through from scanned images is called the show-through removal in the literature. In this paper, we propose a new method of show-through removal based on the following principle. The proposed method uses two scanned images with the front side and with the back side as input images. The proposed method is based on Ahmed's Blind Image Deconvolution method discovered in 2013, which succeeded in formulating Blind Image Deconvolution as a nuclear norm minimization. Since the structure of show-through removal resembles that of Blind Image Deconvolution, we discovered that the show-through removal can be reformulated into a nuclear norm minimization in the space of outer product matrix constructed from an image vector and a point spread function vector of blurring. Using this key idea, we constructed the proposed method as follows. First, our cost function consists of the following three terms. The first term is the data term and the second term is the nuclear norm derived from the above reformulation. The third term is a regularization term to overcome the underdetermined nature of show-through removal problem and the existence of noise in the measured images. The regularization term consists of Total Variation imposed on the images. The resulting nuclear norm minimization problem is solved by using Accelerated Proximal Gradient method and Singular Value Projection with some problem-specific modifications, which converges fast and requires a simple implementation. We show results of simulation studies as well as results of real image experiments to demonstrate the performances of the proposed method.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
3.
J Med Eng Technol ; 47(2): 141-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36426804

RESUMO

The mechanical properties of the myocardium in the left ventricle and right atrium were estimated by simultaneously measuring the local impedance (LI) and contact force (CF) using an ablation catheter. Radiofrequency catheter ablation (RFCA) is a well-established arrhythmia treatment. Monitoring the RF power, CF and properties of myocardium during RFCA are necessary to estimate the effect of ablation. Indices, such as CF, lesion size index and ablation index, do not include the myocardium mechanical properties. Therefore, there is the risk of side effects, such as cardiac tamponade, by excessive catheter indentation into vulnerable areas. We propose the simultaneous measurement of LI and CF for estimating the myocardial mechanical properties to reduce the side effects. In this study, an in vitro experimental system was constructed to measure LI and CF via the catheter. The relationship between the porcine myocardial tissue thickness and CF-LI curve was investigated using the left ventricle and right atrium. Power function coefficients approximating the CF-LI curve increased with thicker left ventricle. The thickness of the myocardium can be estimated by simultaneously measuring LI and CF. Intraoperative measurement of the myocardial mechanical properties can be used to determine the ablation conditions at each site.


Assuntos
Arritmias Cardíacas , Ablação por Cateter , Suínos , Animais , Impedância Elétrica , Ventrículos do Coração/cirurgia , Ventrículos do Coração/patologia , Catéteres , Ablação por Cateter/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa