Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34149115

RESUMO

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30093825

RESUMO

Recent climate modeling studies have concluded that cumulative carbon emissions determine temperature increase, regardless of emission pathways. Accordingly, the optimal emission pathway can be determined from a socioeconomic standpoint. To access the path dependence of socioeconomic impacts for cumulative carbon emissions, we used a computable general equilibrium model to analyze impacts on major socioeconomic indicators on a global scale for 30-50 pathways with different emission reduction starting years, different subsequent emission pathways, and three different cumulative 2100 emission scenarios (emissions that meet the 2 °C target, the 2 °C target emissions plus 10 %, and emissions producing radiative forcing of 4.5 W/m2). The results show that even with identical cumulative emission figures, the resulting socioeconomic impacts vary by the pathway realized. For the United Nations 2 °C target, for example, (a) the 95 % confidence interval of cumulative global gross domestic product (GDP) is 1355-1363 trillion US dollars (2010-2100, discount rate = 5 %), (b) the cumulative GDP of pathways with later emission reduction starting years grows weaker (5 % significance level), and (c) emissions in 2100 have a moderate negative correlation with cumulative GDP. These results suggest that GDP loss is minimized with pathways with earlier emission reduction followed by more moderate reduction rates to achieve lower emission levels. Consequently, we suggest an early emission peak to meet the stringent target. In our model setting, it is desirable for emissions to peak by 2020 to reduce mitigation cost and by 2030 at the latest to meet the 2 °C target.

3.
Sci Adv ; 8(26): eabl9207, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776795

RESUMO

Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change. Anthropogenic nutrient inputs increase oceanic productivity and carbon uptake, offsetting climate-induced decrease and accelerating climate-driven deoxygenation in the upper ocean. Moreover, accounting for anthropogenic nutrient inputs improves the known carbon budget imbalance and model underestimation of the observed decrease in the global oxygen inventory. Considering the effects of both nutrient inputs and climate change is crucial in assessing anthropogenic impacts on ocean biogeochemistry.

4.
Mar Pollut Bull ; 85(2): 317-24, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24835373

RESUMO

Global warming effects on seaweed beds are already perceptible. Their geographical distributions greatly depend on water temperatures. To predict future geographical distributions of brown alga, Sargassum horneri, forming large beds in the northwestern Pacific, we referred to future monthly surface water temperatures at about 1.1° of longitude and 0.6° of latitude in February and August in 2050 and 2100 simulated by 12 organizations under an A2 scenario of global warming. The southern limit of S. horneri distribution is expected to keep moving northward such that it may broadly disappear from Honshu Island, the Chinese coast, and Korean Peninsula in 2100, when tropical Sargassum species such as Sargassum tenuifolium may not completely replace S. horneri. Thus, their forests in 2100 do not substitute those of S. horneri in 2000. Fishes using the beds and seaweed rafts consisting of S. horneri in East China Sea suffer these disappearances.


Assuntos
Peixes/fisiologia , Aquecimento Global , Sargassum/fisiologia , Animais , Ásia , Dinâmica Populacional , Água do Mar/química , Temperatura
5.
Carbon Balance Manag ; 6: 8, 2011 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21982124

RESUMO

BACKGROUND: Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined. RESULTS: Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. CONCLUSIONS: Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa