Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36166820

RESUMO

How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic "two-factor" model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.


Assuntos
Genes de Plantas , Silene , Animais , Evolução Molecular , Plantas/genética , Cromossomos Sexuais , Silene/genética , Cromossomo Y
2.
J Phycol ; 56(1): 159-169, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595519

RESUMO

Recognition of the wide diversity of organisms that maintain complex haploid-diploid life cycles has generated interest in understanding the evolution and persistence of such life cycles. We empirically tested the model where complex haploid-diploid life cycles may be maintained by subtle/cryptic differences in the vital rates of isomorphic haploid-diploids, by examining the ecophysiology of haploid tetraspores and diploid carpospores of the isomorphic red alga Chondrus verrucosus. While tetraspores and carpospores of this species did not differ in size or autofluorescence, concentrations of phycobiliproteins of carpospores were greater than that of tetraspores. However, tetraspores were more photosynthetically competent than carpospores over a broader range of photosynthetic photon flux densities (PPFDs) and at PPFDs found at both the depth that C. verrucosus is found at high tide and in surface waters in which planktonic propagules might disperse. These results suggest potential differences in dispersal potential and reproductive success of haploid and diploid spores. Moreover, these cryptic differences in ecological niche partitioning of haploid and diploid spores contribute to our understanding of some of the differences between these ploidy stages that may ultimately lead to the maintenance of the complex haploid-diploid life cycle in this isomorphic red alga.


Assuntos
Diploide , Rodófitas , Animais , Haploidia , Estágios do Ciclo de Vida , Esporos
3.
Anal Chem ; 91(24): 15563-15569, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31774654

RESUMO

Raman and fluorescence spectroscopies offer complementary approaches in bioanalytical chemistry, particularly in microbiological assays. The former method is used to detect lipids, metabolites, and nonspecific proteins and nucleic acids in a label-free manner, while the latter is used to investigate targeted proteins, nucleic acids, and their interactions via labeling or transfection. Despite their complementarity, these regimes are seldom used in conjunction due to fluorescent signals overwhelming inherently weak Raman signals by more than several orders of magnitude. Here we report a multimodal spectrometer that simultaneously performs Raman and fluorescence spectroscopies at high speed. It is made possible by Fourier-transform-coherent anti-Stokes Raman scattering (FT-CARS) and Fourier-transform-two-photon excitation (FT-TPE) measurements powered by a femtosecond pulse laser coupled to a homemade rapid-scan Michelson interferometer, operating at 24 000 spectra per second. As a proof-of-principle demonstration, we validate the ultrafast fluoRaman spectrometer by measuring coumarin dyes in organic solvents. To show its potential for applications that require rapid fluoRaman spectroscopy, we also demonstrate fluoRaman flow cytometry of Haematococcus pluvialis cells under varying culture conditions with a high throughput of ∼10 events per second to perform large-scale single-cell analysis of their metabolic stress response.

4.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818769

RESUMO

(1) Background: Silene latifolia is a dioecious plant, whose sex is determined by XY-type sex chromosomes. Microbotryum lychnidis-dioicae is a smut fungus that infects S. latifolia plants and causes masculinization in female flowers, as if Microbotryum were acting as a sex-determining gene. Recent large-scale sequencing efforts have promised to provide candidate genes that are involved in the sex determination machinery in plants. These candidate genes are to be analyzed for functional characterization. A virus vector can be a tool for functional gene analyses; (2) Methods: To develop a viral vector system in S. latifolia plants, we selected Apple latent spherical virus (ALSV) as an appropriate virus vector that has a wide host range; (3) Results: Following the optimization of the ALSV inoculation method, S. latifolia plants were infected with ALSV at high rates in the upper leaves. In situ hybridization analysis revealed that ALSV can migrate into the flower meristems in S. latifolia plants. Successful VIGS (virus-induced gene silencing) in S. latifolia plants was demonstrated with knockdown of the phytoene desaturase gene. Finally, the developed method was applied to floral organ genes to evaluate its usability in flowers; (4) Conclusion: The developed system enables functional gene analyses in S. latifolia plants, which can unveil gene functions and networks of S. latifolia plants, such as the mechanisms of sex determination and fungal-induced masculinization.


Assuntos
Inativação Gênica , Secoviridae/fisiologia , Silene/genética , Regulação para Baixo/genética , Flores/virologia , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Fenótipo , Doenças das Plantas/virologia , Reprodutibilidade dos Testes
5.
Plant Cell ; 27(4): 1173-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25841039

RESUMO

Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.


Assuntos
Meristema/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Oryza/genética , Proteínas de Plantas/genética , Ligação Proteica
6.
Plant Cell Physiol ; 58(2): 320-328, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011871

RESUMO

Mechanisms of suppression of pistil primordia in male flowers and of stamen primordia in female flowers differ in diclinous plants. In this study, we investigated how cell death and cell cycle arrest are related to flower organ formation in Silene latifolia. Using in situ hybridization and a TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, we detected both cell cycle arrest and cell death in suppressed stamens of female flowers and suppressed pistils of male flowers in S. latifolia. In female flowers infected with Microbotryum lychnidis-dioicae, developmental suppression of stamens is released, and cell cycle arrest and cell death do not occur. Smut spores are formed in S. latifolia anthers infected with M. lychnidis-dioicae, followed by cell death in the endothelium, middle layer, tapetal cells and pollen mother cells. Cell death is difficult to detect using a fluorescein isothiocyanate-labeled TUNEL assay due to strong autofluorescence in the anther. We therefore combined a TUNEL assay in an infrared region with transmission electron microscopy to detect cell death in anthers. We show that following infection by M. lychnidis-dioicae, a TUNEL signal was not detected in the endothelium, middle layer or pollen mother cells, and cell death with outflow of cell contents, including the nucleoplast, was observed in tapetal cells.


Assuntos
Basidiomycota/fisiologia , Flores/metabolismo , Silene/metabolismo , Silene/microbiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Morte Celular/fisiologia , Flores/microbiologia , Pólen/metabolismo , Pólen/microbiologia
7.
Proc Natl Acad Sci U S A ; 110(23): 9583-8, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23696667

RESUMO

Peroxisomes (microbodies) are ubiquitous single-membrane-bounded organelles and fulfill essential roles in the cellular metabolism. They are found in virtually all eukaryotic cells and basically multiply by division. However, the mechanochemical machinery involved in peroxisome division remains elusive. Here, we first identified the peroxisome-dividing (POD) machinery. We isolated the POD machinery from Cyanidioschyzon merolae, a unicellular red alga containing a single peroxisome. Peroxisomal division in C. merolae can be highly synchronized by light/dark cycles and the microtubule-disrupting agent oryzalin. By proteomic analysis based on the complete genome sequence of C. merolae, we identified a dynamin-related protein 3 (DRP3) ortholog, CmDnm1 (Dnm1), that predominantly accumulated with catalase in the dividing-peroxisome fraction. Immunofluorescence microscopy demonstrated that Dnm1 formed a ring at the division site of the peroxisome. The outlines of the isolated dynamin rings were dimly observed by phase-contrast microscopy and clearly stained for Dnm1. Electron microscopy revealed that the POD machinery was formed at the cytoplasmic side of the equator. Immunoelectron microscopy showed that the POD machinery consisted of an outer dynamin-based ring and an inner filamentous ring. Down-regulation of Dnm1 impaired peroxisomal division. Surprisingly, the same Dnm1 serially controlled peroxisomal division after mitochondrial division. Because genetic deficiencies of Dnm1 orthologs in multiperoxisomal organisms inhibited both mitochondrial and peroxisomal proliferation, it is thought that peroxisomal division by contraction of a dynamin-based machinery is universal among eukaryotes. These findings are useful for understanding the fundamental systems in eukaryotic cells.


Assuntos
Dinamina I/metabolismo , Peroxissomos/fisiologia , Rodófitas/fisiologia , Catalase/metabolismo , Dinitrobenzenos , Regulação para Baixo , Dinamina I/genética , Immunoblotting , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Peroxissomos/ultraestrutura , Proteômica , Rodófitas/genética , Rodófitas/ultraestrutura , Sulfanilamidas
8.
Plant J ; 74(4): 605-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23398289

RESUMO

Septins are a group of GTP-binding proteins that are multi-functional, with a well-known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog-possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.


Assuntos
Evolução Biológica , Clorófitas/genética , Septinas/genética , Proteínas de Algas/antagonistas & inibidores , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Divisão Celular , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Citocinese , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Biológicos , Dados de Sequência Molecular , Compostos de Fenilureia/farmacologia , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Piridinas/farmacologia , Septinas/antagonistas & inibidores , Septinas/metabolismo
9.
Biotechnol Biofuels Bioprod ; 17(1): 36, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443960

RESUMO

BACKGROUND: Previously, we isolated a mutant of Parachlorella kessleri named strain PK4 that accumulated higher concentrations of lipids than the wild-type strain. Resequencing of the PK4 genome identified mutations in three genes which may be associated with the high-lipid phenotype. The first gene, named CDMT1, encodes a protein with a calcium-dependent membrane association domain; the second gene, named DMAN1, encodes endo-1,4-ß-mannanase, while the third gene, named AATPL1, encodes a plastidic ATP/ADP antiporter-like protein. RESULTS: To determine which of these mutant genes are directly responsible for the phenotype of strain PK4, we delivered Cas9-gRNA ribonucleoproteins targeting each of the three genes into the wild-type cells by electroporation and successfully disrupted these three genes separately. The lipid productivity in the disruptants of CDMT1 and DMAN1 was similar to and lower than that in the wild-type strain, while the disruptants of AATPL1 exhibited > 30% higher lipid productivity than the wild-type strain under diurnal conditions. CONCLUSIONS: We succeeded in improving the lipid productivity of P. kessleri by CRISPR/Cas9-mediated gene disruption of AATPL1. The effective gene-editing method established in this study will be useful to improve Parachlorella strains for industrial applications.

10.
Plant Cell Physiol ; 54(11): 1917-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24058152

RESUMO

The green microalga Haematococcus pluvialis accumulates the red pigment astaxanthin accompanied by morphological changes under stress conditions, including nutrient depletion, continuous light and high temperature. To investigate the physiological state of the algal cells, we developed the digital image-processing software called HaematoCalMorph. The software automatically outputs 25 single-cell measurements of cell morphology and pigments based on color, bright-field microscopic images. Compared with manual inspection, the output values of cell shape were reliable and reproducible. The estimated pigment content fits the values calculated by conventional methods. Using a random forests classifier, we were able to distinguish flagellated cells from immotile cells and detect their transient appearance in culture. By performing principal components analysis, we also successfully monitored time-dependent morphological and colorimetric changes in culture. Thus, combined with multivariate statistical techniques, the software proves useful for studying cellular responses to various conditions as well as for monitoring population dynamics in culture.


Assuntos
Clorófitas/citologia , Interpretação de Imagem Assistida por Computador/métodos , Software , Algoritmos , Carotenoides/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Clorofila/metabolismo , Clorófitas/fisiologia , Aumento da Imagem , Análise Multivariada , Reprodutibilidade dos Testes , Xantofilas/metabolismo
11.
Biotechnol Bioeng ; 110(1): 97-107, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22766749

RESUMO

The alga Parachlorella kessleri, strain CCALA 255, grown under optimal conditions, is characterized by storage of energy in the form of starch rather than lipids. If grown in the complete medium, the cultures grew rapidly, producing large amounts of biomass in a relatively short time. The cells, however, contained negligible lipid reserves (1-10% of DW). Treatments inducing hyperproduction of storage lipids in P. kessleri biomass were described. The cultures were grown in the absence or fivefold decreased concentration of either nitrogen or phosphorus or sulfur. Limitation by all elements using fivefold or 10-fold diluted mineral medium was also tested. Limitation with any macroelement (nitrogen, sulfur, or phosphorus) led to an increase in the amount of lipids; nitrogen limitation was the most effective. Diluted nutrient media (5- or 10-fold) were identified as the best method to stimulate lipid overproduction (60% of DW). The strategy for lipid overproduction consists of the fast growth of P. kessleri culture grown in the complete medium to produce sufficient biomass (DW more than 10 g/L) followed by the dilution of nutrient medium to stop growth and cell division by limitation of all elements, leading to induction of lipid production and accumulation up to 60% DW. Cultivation conditions necessary for maximizing lipid content in P. kessleri biomass generated in a scale-up solar open thin-layer photobioreactor were described.


Assuntos
Clorófitas/metabolismo , Lipídeos/biossíntese , Microalgas/metabolismo , Biomassa , Biotecnologia , Dióxido de Carbono/metabolismo , Clorofila/análise , Clorofila/metabolismo , Meios de Cultura , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fotobiorreatores , Amido/análise , Amido/metabolismo
12.
J Plant Res ; 126(1): 105-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22810354

RESUMO

The dioecious plant Silene latifolia depends on nocturnal insects for pollination. To increase the chance of cross-pollination, pollen grains seem to be released and stigmas seem to be receptive simultaneously at night. We divided the floral development of S. latifolia into 1-20 stages, and determined the timetables of male and female function. The corolla of both male and female flowers opens at sunset (1900 hours) and closes at sunrise (0900 hours). To investigate the period of the reproductive phase of male and female function, we measured the germination rate on a pollen medium and the pollen germination rate on stigma during the period when stamens and stigmas were viable in the timetable. Male flowers had early- and late-maturing stamens that had the highest pollen viability, germination rate and pollen tube growth at midnight (0000 hours) at 1 day after flowering (DAF) and 0000 hours at 2 DAF. In contrast, female flowers maintained a germination rate of nearly 100 % from 1800 hours at 1 DAF to 1200 hours at 3 DAF. These results suggested that S. latifolia transferred the matured pollen grains from male flowers to female flowers only at night.


Assuntos
Flores/crescimento & desenvolvimento , Óvulo Vegetal/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Silene/crescimento & desenvolvimento , Sobrevivência Celular , Fatores de Tempo
13.
Sci Rep ; 12(1): 2995, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194142

RESUMO

The maternal/uniparental inheritance of mitochondria is controlled by the selective elimination of paternal/uniparental mitochondria and digestion of their mitochondrial DNA (mtDNA). In isogamy, the selective digestion of mtDNA in uniparental mitochondria is initiated after mating and is completed prior to the elimination of mitochondria, but the molecular mechanism of the digestion of uniparental mtDNA remains unknown. In this study, we developed a semi-in vitro assay for DNase, wherein the digestion of mitochondrial nucleoids (mt-nucleoids) was microscopically observed using isolated mitochondria from Physarum polycephalum and the DNase involved in uniparental inheritance was characterized. When myxamoebae of AI35 and DP246 are crossed, mtDNA and mt-nucleoid from only the DP246 parent are digested. The digestion of mt-nucleoids was observed in zygotes 3 h after plating for mating. During the digestion of mt-nucleoids, mitochondrial membrane integrity was maintained. In the semi-in vitro assay, the digestion of mt-nucleoids was only observed in the presence of Mg2+ at pH 7.5-9.0. Moreover, such Mg2+-dependent DNase activity was specifically detected in mitochondria isolated from zygotes 3 h after plating for mating. Therefore, Mg2+-dependent DNase is potentially involved in uniparental inheritance. Our findings provide insights into the DNase involved in uniparental inheritance and its regulatory mechanism.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Desoxirribonucleases/metabolismo , Desoxirribonucleases/fisiologia , Magnésio/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Physarum polycephalum/genética , Physarum polycephalum/metabolismo , Zigoto , Concentração de Íons de Hidrogênio , Mitocôndrias/enzimologia , Membranas Mitocondriais/metabolismo , Physarum polycephalum/fisiologia
14.
Commun Biol ; 5(1): 1333, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473948

RESUMO

The gametes of chlorophytes differ morphologically even in isogamy and are divided into two types (α and ß) based on the mating type- or sex-specific asymmetric positioning of the mating structure (cell fusion apparatus) with respect to the flagellar beat plane and eyespot, irrespective of the difference in gamete size. However, the relationship between this morphological trait and the mating type or sex determination system is unclear. Using mating type-reversed strains of the isogamous alga Chlamydomonas reinhardtii, produced by deletion or introduction of the mating type-determining gene MID, we revealed that the positioning of the mating structure is associated with conversion of mating types (mt- and mt+), implying that this trait is regulated by MID. Moreover, the dominant mating type is associated with the type ß phenotype, as in the chlorophyte species Ulva prolifera. Our findings may provide a genetic basis for mating type- or sex-specific asymmetric positioning of the chlorophyte mating structure.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genética
15.
Planta ; 233(1): 75-86, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20922544

RESUMO

In the cultures of the alga Chlamydomonas reinhardtii, division rhythms of any length from 12 to 75 h were found at a range of different growth rates that were set by the intensity of light as the sole source of energy. The responses to light intensity differed in terms of altered duration of the phase from the beginning of the cell cycle to the commitment to divide, and of the phase after commitment to cell division. The duration of the pre-commitment phase was determined by the time required to attain critical cell size and sufficient energy reserves (starch), and thus was inversely proportional to growth rate. If growth was stopped by interposing a period of darkness, the pre-commitment phase was prolonged corresponding to the duration of the dark interval. The duration of the post-commitment phase, during which the processes leading to cell division occurred, was constant and independent of growth rate (light intensity) in the cells of the same division number, or prolonged with increasing division number. It appeared that different regulatory mechanisms operated through these two phases, both of which were inconsistent with gating of cell division at any constant time interval. No evidence was found to support any hypothetical timer, suggested to be triggered at the time of daughter cell release.


Assuntos
Ciclo Celular/efeitos da radiação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Luz , Células Cultivadas , Chlamydomonas reinhardtii/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Escuridão , Mutação/genética , Proteínas Circadianas Period/metabolismo , Fatores de Tempo
16.
Planta ; 234(3): 599-608, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21573815

RESUMO

Synchronized cultures of the green alga Chlamydomonas reinhardtii were grown photoautotrophically under a wide range of environmental conditions including temperature (15-37 °C), different mean light intensities (132, 150, 264 µmol m⁻² s⁻¹), different illumination regimes (continuous illumination or alternation of light/dark periods of different durations), and culture methods (batch or continuous culture regimes). These variable experimental approaches were chosen in order to assess the role of temperature in the timing of cell division, the length of the cell cycle and its pre- and post-commitment phases. Analysis of the effect of temperature, from 15 to 37 °C, on synchronized cultures showed that the length of the cell cycle varied markedly from times as short as 14 h to as long as 36 h. We have shown that the length of the cell cycle was proportional to growth rate under any given combination of growth conditions. These findings were supported by the determination of the temperature coefficient (Q10), whose values were above the level expected for temperature-compensated processes. The data presented here show that cell cycle duration in C. reinhardtii is a function of growth rate and is not controlled by a temperature independent endogenous timer or oscillator, including a circadian one.


Assuntos
Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Divisão Celular/fisiologia , Células Cultivadas , Escuridão , Luz , Temperatura
17.
Cells ; 10(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34359975

RESUMO

Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism-multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 µmol photons m-2 s-1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.


Assuntos
Divisão Celular/fisiologia , Microalgas/metabolismo , Amido/metabolismo , Temperatura , Biomassa , Clorófitas/crescimento & desenvolvimento , Metabolismo dos Lipídeos/fisiologia , Lipídeos
18.
Biomolecules ; 11(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203860

RESUMO

Multiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga Parachlorella kessleri to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons m-2s-1. Furthermore, we studied the effect of deuterated water on Parachlorella kessleri growth and division, to mimic the effect of stress. We describe a novel multiple fission cell cycle pattern characterized by multiple rounds of DNA replication leading to cell polyploidization. Once completed, multiple nuclear divisions were performed with each of them, immediately followed by protoplast fission, terminated by the formation of daughter cells. The multiple fission cell cycle was represented by several consecutive doublings of growth parameters, each leading to the start of a reproductive sequence. The number of growth doublings increased with increasing light intensity and led to division into more daughter cells. This study establishes the baseline for cell cycle research at the molecular level as well as for potential biotechnological applications, particularly directed synthesis of (deuterated) starch and/or neutral lipids as carbon and energy reserves.


Assuntos
Técnicas de Cultura de Células , Ciclo Celular , Clorófitas/crescimento & desenvolvimento , Luz
19.
Plant Cell Physiol ; 51(2): 282-93, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20064843

RESUMO

Carpel suppression is a trigger for sexual dimorphism in the dioecious plant Silene latifolia. To clarify what kind of genes are involved in carpel suppression in this species, we generated a bisexual mutant, R025, by C-ion beam irradiation. R025 produces bisexual flowers with a mature gynoecium and mature stamens. Genetic analysis of R025 attributed the bisexual trait to mutations on the Y chromosome. Scanning electron microscopy (SEM) analysis of early floral development revealed that the carpel size of R025 was different from that of wild-type males in spite of the male background in R025. We also identified an S. latifolia CLAVATA1-like gene (SlCLV1) as a candidate of the CLAVATA-WUSCHEL (CLV-WUS) pathway. Two separate pathways, the CLV-WUS pathway and the CUP-SHAPED COTYLEDON (CUC)-SHOOT MERISTEMLESS (STM) pathway, contribute to carpel development in the Arabidopsis floral meristem. SlSTM1 and SlSTM2 (orthologs of STM) and SlCUC (an ortholog of CUC1 and CUC2) have already been identified in S. latifolia. We therefore examined the expression patterns of SlCLV1, SlSTM (SlSTM1 and SlSTM2) and SlCUC in young flowers of R025 and wild-type males and females. The expression patterns of the three genes in the two pathways differ between the wild-type male and the bisexual mutant, and the differences in expression patterns of the three genes occur at the same stage. These results suggest that in addition to SlSTM1, SlSTM2 and SlCUC, SlCLV1 is also involved in carpel suppression in S. latifolia. They also suggest that a gynoecium-suppressing factor (GSF), which is lost in the R025 Y chromosome, acts on an upstream gene that is common to the two pathways, triggering sexual dimorphism in S. latifolia.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Silene/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases , RNA de Plantas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Alinhamento de Sequência , Silene/crescimento & desenvolvimento , Silene/metabolismo
20.
Genome ; 53(4): 311-20, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20616862

RESUMO

Silene latifolia is a model dioecious plant with morphologically distinguishable XY sex chromosomes. The end of the Xq arm is quite different from that of the Yp arm, although both are located at opposite ends of their respective chromosomes relative to a pseudo-autosomal region. The Xq arm does not seem to originate from the same autosome as the Yp arm. Bacterial artificial chromosome clone #15B12 has an insert containing a 130-kb stretch in which a 313-bp satellite DNA is repeated 420 times. PCR with a single primer revealed that this 130-kb stretch consists of three reversals of the orientation of the satellite DNA. A non-long terminal repeat retroelement and two sequences that share homology with an Oryza sativa RING zinc finger and a putative Arabidopsis thaliana protein, respectively, were found in the sequences that flank the satellite DNA. Fluorescence in situ hybridization carried out using this low-copy region of #15B12 as a probe confirmed that these sequences originated from the X chromosome and that homologous sequences exist at the end of chromosome 7. The region distal to DD44X on the Xq arm is postulated to have recombined with a region containing satellite DNA on chromosome 7 during the process of sex chromosome evolution.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Silene/genética , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/química , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa