Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 98(2): 291-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570803

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases, called respiratory burst oxidase homologs (Rbohs), play crucial roles in development as well as biotic and abiotic stress responses in plants. Arabidopsis has 10 Rboh genes, AtRbohA to AtRbohJ. Five AtRbohs (AtRbohC, -D, -F, -H and -J) are synergistically activated by Ca2+ -binding and protein phosphorylation to produce ROS that play various roles in planta, although the activities of the other Rbohs remain unknown. With a heterologous expression system, we found a range of ROS-producing activity among the AtRbohs with differences up to 100 times, indicating that the required amounts of ROS are different in each situation where AtRbohs act. To specify the functions of AtRbohs involved in cell growth, we focused on AtRbohC, -H and -J, which are involved in tip growth of root hairs or pollen tubes. Ectopic expression of the root hair factor AtRbohC/ROOT HAIR DEFECTIVE 2 (RHD2) in pollen tubes restored the atrbohH atrbohJ defects in tip growth of pollen tubes. However, expression of AtRbohH or -J in root hairs did not complement the tip growth defect in the atrbohC/rhd2 mutant. Our data indicate that Rbohs possess different ranges of enzymatic activity, and that some Rbohs have evolved to carry specific functions in cell growth.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células HEK293 , Humanos , Mutação , NADPH Oxidases/classificação , NADPH Oxidases/genética , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento
2.
Plant Cell ; 26(3): 1069-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24610725

RESUMO

In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca(2+) binding EF-hand motifs, possessed Ca(2+)-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca(2+)-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca(2+)-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca(2+). Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca(2+)-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Cálcio/metabolismo , NADPH Oxidases/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ionomicina/farmacologia , Toxinas Marinhas , Dados de Sequência Molecular , Mutação , NADPH Oxidases/química , NADPH Oxidases/genética , Oxazóis/farmacologia , Homologia de Sequência de Aminoácidos
3.
Biochim Biophys Acta ; 1833(12): 2775-2780, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872431

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in plant environmental responses. Arabidopsis thaliana NADPH oxidase AtRbohF-mediated ROS-production is involved in abiotic stress responses. Because overproduction of ROS is highly toxic to cells, the activity of AtRbohF needs to be tightly regulated in response to diverse stimuli. The ROS-producing activity of AtRbohF is activated by Ca(2+) and protein phosphorylation, but other regulatory factors for AtRbohF are mostly unknown. In this study, we screened for proteins that interact with the N-terminal cytosolic region of AtRbohF by a yeast two-hybrid screen, and isolated AtSRC2, an A. thaliana homolog of SRC2 (soybean gene regulated by cold-2). A co-immunoprecipitation assay revealed that AtSRC2 interacts with the N-terminal region of AtRbohF in plant cells. Intracellular localization of GFP-tagged AtSRC2 was partially overlapped with that of GFP-tagged AtRbohF at the cell periphery. Co-expression of AtSRC2 enhanced the Ca(2+)-dependent ROS-producing activity of AtRbohF in HEK293T cells, but did not affect its phosphorylation-dependent activation. Low-temperature treatment induced expression of the AtSRC2 gene in Arabidopsis roots in proportion to levels of ROS production that was partially dependent on AtRbohF. Our findings suggest that AtSRC2 is a novel activator of Ca(2+)-dependent AtRbohF-mediated ROS production and may play a role in cold responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Temperatura Baixa , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , NADPH Oxidases/química , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
Biochim Biophys Acta ; 1823(2): 398-405, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22001402

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cálcio/metabolismo , Retroalimentação Fisiológica , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ionóforos de Cálcio/metabolismo , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Ionomicina/metabolismo , Toxinas Marinhas , NADPH Oxidases/química , NADPH Oxidases/genética , Oxazóis/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
5.
J Biochem ; 153(2): 191-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23162070

RESUMO

The plant NADPH oxidases, known as respiratory burst oxidase homologues (Rbohs), play an indispensable role in a wide array of cellular and developmental processes. Arabidopsis thaliana RbohF (AtRbohF)-mediated production of reactive oxygen species (ROS) is involved in biotic and abiotic stress responses. Because of the toxicity of excess amount of ROS, the ROS-producing activity of Rbohs is speculated to be negatively regulated. However, its mechanism is mostly unknown to date. Here, we report the identification of calcineurin B-like protein-interacting protein kinase 26 (CIPK26) as a novel regulatory factor of AtRbohF. We isolated CIPK26 as an AtRbohF-interacting partner by a yeast two-hybrid screen. Our co-immunoprecipitation assay revealed that the CIPK26 protein interacts with the N-terminal region of AtRbohF in Nicotiana benthamiana cell extracts. The fluorescence of both GFP-tagged CIPK26 and AtRbohF was predominantly observed at the cell periphery. We also showed that co-expression of CIPK26 decreases the ROS-producing activity of AtRbohF in HEK293T cells. Together, these results suggest that the direct binding of CIPK26 to AtRbohF negatively modulates ROS production and play a role in the regulation of ROS signalling in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa