Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612745

RESUMO

Insects heavily rely on the olfactory system for food, mating, and predator evasion. However, the caste-related olfactory differences in Apis cerana, a eusocial insect, remain unclear. To explore the peripheral and primary center of the olfactory system link to the caste dimorphism in A. cerana, transcriptome and immunohistochemistry studies on the odorant receptors (ORs) and architecture of antennal lobes (ALs) were performed on different castes. Through transcriptomesis, we found more olfactory receptor genes in queens and workers than in drones, which were further validated by RT-qPCR, indicating caste dimorphism. Meanwhile, ALs structure, including volume, surface area, and the number of glomeruli, demonstrated a close association with caste dimorphism. Particularly, drones had more macroglomeruli possibly for pheromone recognition. Interestingly, we found that the number of ORs and glomeruli ratio was nearly 1:1. Also, the ORs expression distribution pattern was very similar to the distribution of glomeruli volume. Our results suggest the existence of concurrent plasticity in both the peripheral olfactory system and ALs among different castes of A. cerana, highlighting the role of the olfactory system in labor division in insects.


Assuntos
Himenópteros , Receptores Odorantes , Abelhas/genética , Animais , Caracteres Sexuais , Comunicação Celular , Alimentos , Receptores Odorantes/genética
2.
Commun Biol ; 7(1): 502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664580

RESUMO

In Asian honeybees, virgin queens typically only mate during a single nuptial flight before founding a colony. This behavior is controlled by the queen-released mandibular pheromone (QMP). 9-oxo-(E)-2-decenoic acid (9-ODA), a key QMP component, acts as sex pheromone and attracts drones. However, how the queens prevent additional mating remains elusive. Here, we show that the secondary QMP component methyl p-hydroxybenzoate (HOB) released by mated queens inhibits male attraction to 9-ODA. Results from electrophysiology and in situ hybridization assay indicated that HOB alone significantly reduces the spontaneous spike activity of 9-ODA-sensitive neurons, and AcerOr11 is specifically expressed in sensilla placodea from the drone's antennae, which are the sensilla that narrowly respond to both 9-ODA and HOB. Deorphanization of AcerOr11 in Xenopus oocyte system showed 9-ODA induces robust inward (regular) currents, while HOB induces inverse currents in a dose-dependent manner. This suggests that HOB potentially acts as an inverse agonist against AcerOr11.


Assuntos
Ácidos Graxos Monoinsaturados , Atrativos Sexuais , Animais , Abelhas/genética , Abelhas/fisiologia , Abelhas/metabolismo , Atrativos Sexuais/metabolismo , Masculino , Feminino , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Comportamento Sexual Animal , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Oócitos/metabolismo , Oócitos/efeitos dos fármacos
3.
Int J Biol Macromol ; : 133692, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972657

RESUMO

Bombus terrestris are efficient pollinators in forestry and agriculture, with higher cold tolerance than other bees. Yet, their cold tolerance mechanism remains unclear. Aquaporins (AQPs) function as cell membrane proteins facilitating rapid water flow, aiding in osmoregulation. Recent studies highlight the importance of insect AQPs in dehydration and cold stress. Comparative transcriptome analysis of B. terrestris under cold stress revealed up-regulation of four AQPs, indicating their potential role in cold tolerance. Seven AQPs-Eglp1, Eglp2, Eglp3, DRIP, PRIP, Bib, and AQP12L-have been identified in B. terrestris. These are widely expressed in various tissues, particularly in the alimentary canal and Malpighian tubules. Functional analysis of BterAQPs in the Xenopus laevis oocytes expressing system showed distinct water and glycerol selectivity, with BterDrip exhibiting the highest water permeability. Molecular modeling of BterDrip revealed six transmembrane domains, two NPA motifs, and an ar/R constriction region (Phe131, His256, Ser265, and Arg271), likely contributing to its water selectivity. Silencing BterDRIP accelerated mortality in B. terrestris under cold stress, highlighting the crucial role of BterDRIP in their cold tolerance and providing a molecular mechanism for their cold adaptation.

4.
Ecol Evol ; 13(11): e10717, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020696

RESUMO

Grylloprimevala jilina is a true cave insect living in the dark areas of caves. It has the characteristics of sparse skin pigmentation, degeneration of the compound eyes and monocular eyes, and obvious preference for high-humidity and low-temperature environments. Given the highly specialized, rare, and limited distribution, G. jilina is considered an endangered species and also a first-level national protected insect in China. Cave creatures often undergo dramatic morphological changes in their sensory systems to adapt to the cave environment. Most previous studies mainly focused on morphological adaptive changes in cave insects, and only a few studied the changes at the gene level. In this study, we performed transcriptome analysis of G. jilina and constructed phylogenetic trees of genes that are related to environmental adaptation, including chemosensory, visual-related, reproduction-related, temperature adaptation-related, and winged morph differentiation-related genes. Besides, the expression levels of environmental adaption-related genes in different tissues, including antennae, heads, thoraxes, abdomens, legs, and tails, were analyzed. The results showed the loss of chemosensory genes and vision-related genes, the conservation of reproduction-related genes and temperature adaptation-related genes, and the conservation of wing-related genes despite the loss of wings, and the results were consistent with other cave insects. The identification and expression study of genes possibly related to the environmental adaptability in G. jilina provided basic data for the protection of this endangered species and increased knowledge about insect evolution in general.

5.
Ecol Evol ; 13(1): e9750, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699568

RESUMO

We erected a new genus (Grylloprimevala Zhou & Ren gen. nov.) and defined a new species (Grylloprimevala jilina Zhou & Ren sp. nov.) from a natural cave in the primeval forest of Jilin Province, China, according to the morphological, behavioral, and molecular evidence. Grylloprimevala gen. nov. is distinguishable from other genera of Grylloblattodea primarily by morphological characters, including the slightly concave posterior margin of the pronotum and no poorly sclerotized zones, six intramarginal and nine intermarginal setae on the cervical sclerite, one tooth on the lacinia, no pulvilli on tarsal segments, and a symmetrical epiproct with a pointed triangular and middle-depressed median projection on the posterior margin. Based on the morphological features mentioned above, we further identified a new species, G. jilina sp. nov. At the aspect of behavior, G. jilina sp. nov. displays the typical characteristics of troglobites, including degraded visual senses, developed body surface sensors, and predation between individuals. Furthermore, molecular phylogenetic analyses also supported the morphological delimitation of G. jilina sp. nov. due to the separate clade of G. jilina sp. nov. Our results provide materials for the determination and conservation of Grylloblattodea in China.

6.
Microsc Res Tech ; 86(1): 12-27, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36318186

RESUMO

Baryscapus dioryctriae is an endoparasitic wasp in the pupae of many Pyralidae pests, such as Dioryctria mendacella, Ostrinia furnacalis, and Chilo suppressalis. To provide requisite background for our ongoing research on the mechanisms of host location in B. dioryctriae, the morphology, abundance, distribution, and ultrastructure of the antennal sensilla were investigated using scanning and transmission electron microscopy. The geniculate antennae of B. dioryctriae are composed of scape, pedicel, and flagellum. Eight types of sensilla including Böhm sensilla, chaetica, trichodea, basiconic capitate peg, campaniformia, placodea, coeloconica, and sensilla styloconicum with a long hair were identified on both sexes. Sexual dimorphism exists in the antennae of B. dioryctriae. The number of flagellomere in males is over females, and the subtypes and abundance of sensilla are also different between the sexes. Additionally, the possible functions of distinct sensilla were discussed, which varies from olfaction, contact chemoreceptive, mechanoreception to hygro-/thermoreception, especially, the sensilla trichodea and placodea might be involved in olfactory perception in B. dioryctriae. These results provide an essential basis for further study on chemical communication between B. dioryctriae and their hosts, and contribute to the development of B. dioryctriae becoming an effective biocontrol agent against the pests of agriculture and forestry.


Assuntos
Himenópteros , Vespas , Animais , Feminino , Masculino , Himenópteros/ultraestrutura , Sensilas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Caracteres Sexuais , Antenas de Artrópodes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa