Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2300566120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307453

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells which recognize a limited repertoire of ligands presented by the MHC class-I like molecule MR1. In addition to their key role in host protection against bacterial and viral pathogens, MAIT cells are emerging as potent anti-cancer effectors. With their abundance in human, unrestricted properties, and rapid effector functions MAIT cells are emerging as attractive candidates for immunotherapy. In the current study, we demonstrate that MAIT cells are potent cytotoxic cells, rapidly degranulating and inducing target cell death. Previous work from our group and others has highlighted glucose metabolism as a critical process for MAIT cell cytokine responses at 18 h. However, the metabolic processes supporting rapid MAIT cell cytotoxic responses are currently unknown. Here, we show that glucose metabolism is dispensable for both MAIT cell cytotoxicity and early (<3 h) cytokine production, as is oxidative phosphorylation. We show that MAIT cells have the machinery required to make (GYS-1) and metabolize (PYGB) glycogen and further demonstrate that that MAIT cell cytotoxicity and rapid cytokine responses are dependent on glycogen metabolism. In summary, we show that glycogen-fueled metabolism supports rapid MAIT cell effector functions (cytotoxicity and cytokine production) which may have implications for their use as an immunotherapeutic agent.


Assuntos
Glicogenólise , Células T Invariantes Associadas à Mucosa , Humanos , Citocinas , Glicogênio , Glucose
2.
Diabetologia ; 65(6): 1012-1017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305128

RESUMO

AIMS/HYPOTHESIS: Mucosal-associated invariant T cells (MAIT cells) are an abundant population of innate T cells. When activated, MAIT cells rapidly produce a range of cytokines, including IFNγ, TNF-α and IL-17. Several studies have implicated MAIT cells in the development of metabolic dysfunction, but the mechanisms through which this occurs are not fully understood. We hypothesised that MAIT cells are associated with insulin resistance in children with obesity, and affect insulin signalling through their production of IL-17. METHODS: In a cross-sectional observational study, we investigated MAIT cell cytokine profiles in a cohort of 30 children with obesity and 30 healthy control participants, of similar age, using flow cytometry. We then used a cell-based model to determine the direct effect of MAIT cells and IL-17 on insulin signalling and glucose uptake. RESULTS: Children with obesity display increased MAIT cell frequencies (2.2% vs 2.8%, p=0.047), and, once activated, these produced elevated levels of both TNF-α (39% vs 28%, p=0.03) and IL-17 (1.25% vs 0.5%, p=0.008). The IL-17-producing MAIT cells were associated with an elevated HOMA-IR (r=0.65, p=0.001). The MAIT cell secretome from adults with obesity resulted in reduced glucose uptake when compared with the secretome from healthy adult control (1.31 vs 0.96, p=0.0002), a defect that could be blocked by neutralising IL-17. Finally, we demonstrated that recombinant IL-17 blocked insulin-mediated glucose uptake via inhibition of phosphorylated Akt and extracellular signal-regulated kinase. CONCLUSIONS/INTERPRETATIONS: Collectively, these studies provide further support for the role of MAIT cells in the development of metabolic dysfunction, and suggest that an IL-17-mediated effect on intracellular insulin signalling is responsible.


Assuntos
Resistência à Insulina , Células T Invariantes Associadas à Mucosa , Obesidade Infantil , Adulto , Criança , Estudos Transversais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária , Obesidade Infantil/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Sci Signal ; 16(781): eabo2709, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071733

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells. Using quantitative mass spectrometry, we identified the activation of two MYC-controlled metabolic pathways, amino acid transport and glycolysis, both of which were necessary for MAIT cell proliferation. Last, we showed that MAIT cells isolated from people with obesity showed decreased MYC mRNA abundance upon activation, which was associated with defective MAIT cell proliferation and functional responses. Collectively, our data uncover the importance of MYC-regulated metabolism for MAIT cell proliferation and provide additional insight into the molecular basis for the functional defects of MAIT cells in obesity.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Obesidade/metabolismo , Glicólise , Ativação Linfocitária , Proliferação de Células
4.
Front Immunol ; 13: 1108071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741413

RESUMO

Mucosal associated invariant T (MAIT) cells are a population of unconventional innate T cells due to their non-MHC restriction and rapid effector responses. MAIT cells can recognise bacterial derived antigens presented on the MHC-like protein via their semi-restricted T cell receptor (TCR). Upon TCR triggering MAIT cells rapidly produce a range of effector molecules including cytokines, lytic granules and chemokines. This rapid and robust effector response makes MAIT cells critical in host responses against many bacterial pathogens. MAIT cells can also respond independent of their TCR via innate cytokines such as interleukin (IL)-18, triggering cytokine production, and are important in anti-viral responses. In addition to their protective role, MAIT cells have been implicated in numerous inflammatory diseases, including metabolic diseases often contributing to the pathogenesis via their robust cytokine production. Effector cells such as MAIT cells require significant amounts of energy to support their potent responses, and the type of nutrients available can dictate the functionality of the cell. Although data on MAIT cell metabolism is just emerging, several recent studies are starting to define the intrinsic metabolic requirements and regulators of MAIT cells. In this review we will outline our current understanding of MAIT cell metabolism, and outline their role in metabolic disease, and how disease-related changes in extrinsic metabolism can alter MAIT cell responses.


Assuntos
Doenças Metabólicas , Células T Invariantes Associadas à Mucosa , Humanos , Citocinas , Receptores de Antígenos de Linfócitos T
5.
Blood Adv ; 5(21): 4447-4455, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34607345

RESUMO

Natural killer (NK) cells are a population of innate immune cells that can rapidly kill cancer cells and produce cytokines such as interferon-γ. A key feature of NK cells is their ability to respond without prior sensitization; however, it is now well established that NK cells can possess memory-like features. After activation with cytokines, NK cells demonstrate enhanced effector functions upon restimulation days or weeks later. This demonstrates that NK cells may be trained to be more effective killers and harnessed as more potent cancer immunotherapy agents. We have previously demonstrated that cellular metabolism is essential for NK cell responses, with NK cells upregulating both glycolysis and oxidative phosphorylation upon cytokine stimulation. Limiting NK cell metabolism results in reduced cytotoxicity and cytokine production. We have also demonstrated that defective NK cell responses in obesity are linked to defective cellular metabolism. In the current study, we investigated if cellular metabolism is required during the initial period of NK cell cytokine training and if NK cells from people with obesity (PWO) can be effectively trained. We show that increased flux through glycolysis and oxidative phosphorylation during the initial cytokine activation period is essential for NK cell training, as is the metabolic signaling factor Srebp. We show that NK cells from PWO, which are metabolically defective, display impaired NK cell training, which may have implications for immunotherapy in this particularly vulnerable group.


Assuntos
Interferon gama , Células Matadoras Naturais , Células Cultivadas , Citocinas , Humanos , Obesidade/terapia
6.
Nat Commun ; 10(1): 2123, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073180

RESUMO

Changes in cellular metabolism are associated with the activation of diverse immune subsets. These changes are fuelled by nutrients including glucose, amino acids and fatty acids, and are closely linked to immune cell fate and function. An emerging concept is that nutrients are not equally available to all immune cells, suggesting that the regulation of nutrient utility through competitive uptake and use is important for controlling immune responses. This review considers immune microenvironments where nutrients become limiting, the signalling alterations caused by insufficient nutrients, and the importance of nutrient availability in the regulation of immune responses.


Assuntos
Microambiente Celular/imunologia , Metabolismo Energético/imunologia , Sistema Imunitário/fisiologia , Imunidade Celular/fisiologia , Nutrientes/metabolismo , Aminoácidos/metabolismo , Vias Biossintéticas/imunologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Sistema Imunitário/citologia , Mitocôndrias/imunologia , Transdução de Sinais/imunologia
7.
Immunometabolism ; 1: e190014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595191

RESUMO

Natural Killer (NK) cells are lymphocytes with an important role in anti-tumour responses. NK cells bridge the innate and adaptive arms of the immune system; they are primed for immediate anti-tumour function but can also have prolonged actions alongside the adaptive T cell response. However, the key signals and cellular processes that are required for extended NK cell responses are not fully known. Herein we show that murine NK cell interaction with tumour cells induces the expression of CD25, the high affinity IL2 receptor, rendering these NK cells highly sensitive to the T cell-derived cytokine IL2. In response to IL2, CD25high NK cells show robust increases in metabolic signalling pathways (mTORC1, cMyc), nutrient transporter expression (CD71, CD98), cellular growth and in NK cell effector functions (IFNγ, granzyme B). Specific ligation of an individual activating NK cell receptor, NK1.1, showed similar increases in CD25 expression and IL2-induced responses. NK cell receptor ligation and IL2 collaborate to induce mTORC1/cMyc signalling leading to high rates of glycolysis and oxidative phosphorylation (OXPHOS) and prolonged NK cell survival. Disrupting mTORC1 and cMyc signalling in CD25high tumour interacting NK cells prevents IL2-induced cell growth and function and compromises NK cell viability. This study reveals that tumour cell interactions and T cell-derived IL2 cooperate to promote robust and prolonged NK cell anti-tumour metabolic responses.

8.
Nat Commun ; 9(1): 2341, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904050

RESUMO

Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.


Assuntos
Aminoácidos/química , Células Matadoras Naturais/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Citocinas/metabolismo , Glutamina/química , Quinase 3 da Glicogênio Sintase/metabolismo , Glicólise , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Subpopulações de Linfócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Proteômica , Ácidos Tricarboxílicos/química
9.
Nat Commun ; 8: 15620, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28555668

RESUMO

Glucose and glycolysis are important for the proinflammatory functions of many immune cells, and depletion of glucose in pathological microenvironments is associated with defective immune responses. Here we show a contrasting function for glucose in dendritic cells (DCs), as glucose represses the proinflammatory output of LPS-stimulated DCs and inhibits DC-induced T-cell responses. A glucose-sensitive signal transduction circuit involving the mTOR complex 1 (mTORC1), HIF1α and inducible nitric oxide synthase (iNOS) coordinates DC metabolism and function to limit DC-stimulated T-cell responses. When multiple T cells interact with a DC, they compete for nutrients, which can limit glucose availability to the DCs. In such DCs, glucose-dependent signalling is inhibited, altering DC outputs and enhancing T-cell responses. These data reveal a mechanism by which T cells regulate the DC microenvironment to control DC-induced T-cell responses and indicate that glucose is an important signal for shaping immune responses.


Assuntos
Células Dendríticas/imunologia , Glucose/metabolismo , Linfócitos T/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Técnicas de Cocultura , Células Dendríticas/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação , Interferon gama/metabolismo , Lipopolissacarídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa