RESUMO
BACKGROUND: Radiomic features extracted from breast MRI have potential for diagnostic, prognostic, and predictive purposes. However, before they can be used as biomarkers in clinical decision support systems, features need to be repeatable and reproducible. OBJECTIVE: Identify repeatable radiomics features within breast tissue on prospectively collected MRI exams through multiple test-retest measurements. STUDY TYPE: Prospective. POPULATION: 11 healthy female volunteers. FIELD STRENGTH/SEQUENCE: 1.5 T; MRI exams, comprising T2-weighted turbo spin-echo (T2W) sequence, native T1-weighted turbo gradient-echo (T1W) sequence, diffusion-weighted imaging (DWI) sequence using b-values 0/150/800, and corresponding derived ADC maps. ASSESSMENT: 18 MRI exams (three test-retest settings, repeated on 2 days) per healthy volunteer were examined on an identical scanner using a fixed clinical breast protocol. For each scan, 91 features were extracted from the 3D manually segmented right breast using Pyradiomics, before and after image preprocessing. Image preprocessing consisted of 1) bias field correction (BFC); 2) z-score normalization with and without BFC; 3) grayscale discretization using 32 and 64 bins with and without BFC; and 4) z-score normalization + grayscale discretization using 32 and 64 bins with and without BFC. STATISTICAL TESTS: Features' repeatability was assessed using concordance correlation coefficient(CCC) for each pair, i.e. each MRI was compared to each of the remaining 17 MRI with a cut-off value of CCC > 0.90. RESULTS: Images without preprocessing produced the highest number of repeatable features for both T1W sequence and ADC maps with 15 of 91 (16.5%) and 8 of 91 (8.8%) repeatable features, respectively. Preprocessed images produced between 4 of 91 (4.4%) and 14 of 91 (15.4%), and 6 of 91 (6.6%) and 7 of 91 (7.7%) repeatable features, respectively for T1W and ADC maps. Z-score normalization produced highest number of repeatable features, 26 of 91 (28.6%) in T2W sequences, in these images, no preprocessing produced 11 of 91 (12.1%) repeatable features. DATA CONCLUSION: Radiomic features extracted from T1W, T2W sequences and ADC maps from breast MRI exams showed a varying number of repeatable features, depending on the sequence. Effects of different preprocessing procedures on repeatability of features were different for each sequence. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.
Assuntos
Mama , Imageamento por Ressonância Magnética , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , RadiografiaRESUMO
Quantitative image analysis models are used for medical imaging tasks such as registration, classification, object detection, and segmentation. For these models to be capable of making accurate predictions, they need valid and precise information. We propose PixelMiner, a convolution-based deep-learning model for interpolating computed tomography (CT) imaging slices. PixelMiner was designed to produce texture-accurate slice interpolations by trading off pixel accuracy for texture accuracy. PixelMiner was trained on a dataset of 7829 CT scans and validated using an external dataset. We demonstrated the model's effectiveness by using the structural similarity index (SSIM), peak signal to noise ratio (PSNR), and the root mean squared error (RMSE) of extracted texture features. Additionally, we developed and used a new metric, the mean squared mapped feature error (MSMFE). The performance of PixelMiner was compared to four other interpolation methods: (tri-)linear, (tri-)cubic, windowed sinc (WS), and nearest neighbor (NN). PixelMiner produced texture with a significantly lowest average texture error compared to all other methods with a normalized root mean squared error (NRMSE) of 0.11 (p < .01), and the significantly highest reproducibility with a concordance correlation coefficient (CCC) ≥ 0.85 (p < .01). PixelMiner was not only shown to better preserve features but was also validated using an ablation study by removing auto-regression from the model and was shown to improve segmentations on interpolated slices.