Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298284

RESUMO

microRNAs (miRNAs) play an important role in the pathology of glioblastoma (GBM), which is the most malignant and most common primary malignant brain tumor. miRNAs can target multiple genes simultaneously and are considered as potential therapeutic agents or targets. This study aimed to determine the role of miR-3174 in the pathobiology of GBM using both in vitro and in vivo approaches. This is the first study deciphering the role of miR-3174 in GBM. We studied the expression of miR-3174 and found it to be downregulated in a panel of GBM cell lines, GSCs and tissues relative to astrocytes and normal brain tissue. This finding led us to hypothesize that miR-3174 has a tumor-suppressive role in GBM. Exogenous expression of miR-3174 inhibited GBM cell growth and invasion, and hampered the neurosphere formation ability of GSCs. miR-3174 downregulated the expression of multiple tumor-promoting genes including CD44, MDM2, RHOA, PLAU and CDK6. Further, overexpression of miR-3174 reduced tumor volume in nude mice with intracranial xenografts. Immuno-histochemical study of brain sections with intracranial tumor xenografts revealed the pro-apoptotic and anti-proliferative activity of miR-3174. In conclusion, we demonstrated that miR-3174 has a tumor-suppressive role in GBM and could be exploited for therapeutic purposes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Animais , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glioblastoma/metabolismo , Camundongos Nus , Genes Supressores de Tumor , Encéfalo/metabolismo , Proliferação de Células/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38562826

RESUMO

Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.

3.
Res Sq ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699302

RESUMO

Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.

4.
J Neurooncol ; 112(2): 153-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23307328

RESUMO

MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy.


Assuntos
Apoptose , Neoplasias Encefálicas/patologia , Encéfalo/metabolismo , Movimento Celular , Glioblastoma/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Adesão Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Humanos , Camundongos , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Biol Chem ; 286(28): 25377-86, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21592959

RESUMO

Epidermal growth factor receptor (EGFR) is involved in development and progression of many human cancers. We have previously demonstrated that the ubiquitin-specific peptidase Usp18 (Ubp43) is a potent regulator of EGFR protein expression. Here we report that the 3'-untranslated region (3'-UTR) of the EGFR message modulates RNA translation following cell treatment with Usp18 siRNA, suggesting microRNA as a possible mediator. Given earlier evidence of EGFR regulation by the microRNA miR-7, we assessed whether miR-7 mediates Usp18 siRNA effects. We found that Usp18 depletion elevates miR-7 levels in several cancer cell lines because of a transcriptional activation and/or mRNA stabilization of miR-7 host genes and that miR-7 acts downstream of Usp18 to regulate EGFR mRNA translation via the 3'-UTR. Also, depletion of Usp18 led to a decrease in protein levels of other known oncogenic targets of miR-7, reduced cell proliferation and soft agar colony formation, and increased apoptosis. Notably, all of these phenotypes were reversed by a specific inhibitor of miR-7. Thus, our findings support a model in which Usp18 inhibition promotes up-regulation of miR-7, which in turn inhibits EGFR expression and the tumorigenic activity of cancer cells.


Assuntos
Regiões 3' não Traduzidas , Endopeptidases/metabolismo , Receptores ErbB/biossíntese , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Apoptose/genética , Proliferação de Células , Endopeptidases/genética , Receptores ErbB/genética , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Estabilidade de RNA/genética , RNA Neoplásico/genética , Ubiquitina Tiolesterase
6.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626721

RESUMO

Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Sequência Conservada/genética , DNA , Genoma , Camundongos , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos
7.
J Neurosci ; 30(9): 3347-57, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20203194

RESUMO

Maturation of the mammalian nervous system requires adequate provision of thyroid hormone and mechanisms that enhance tissue responses to the hormone. Here, we report that the development of cones, the photoreceptors for daylight and color vision, requires protection from thyroid hormone by type 3 deiodinase, a thyroid hormone-inactivating enzyme. Type 3 deiodinase, encoded by Dio3, is expressed in the immature mouse retina. In Dio3(-/-) mice, approximately 80% of cones are lost through neonatal cell death. Cones that express opsin photopigments for response to both short (S) and medium-long (M) wavelength light are lost. Rod photoreceptors, which mediate dim light vision, remain essentially intact. Excessive thyroid hormone in wild-type pups also eliminates cones. Cone loss is mediated by cone-specific thyroid hormone receptor beta2 (TRbeta2) as deletion of TRbeta2 rescues cones in Dio3(-/-) mice. However, rescued cones respond to short but not longer wavelength light because TRbeta2 under moderate hormonal stimulation normally induces M opsin and controls the patterning of M and S opsins over the retina. The results suggest that type 3 deiodinase limits hormonal exposure of the cone to levels that safeguard both cone survival and the patterning of opsins that is required for cone function.


Assuntos
Iodeto Peroxidase/genética , Retina/enzimologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/enzimologia , Hormônios Tireóideos/metabolismo , Animais , Morte Celular/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Luz , Masculino , Camundongos , Camundongos Knockout , Opsinas/metabolismo , Estimulação Luminosa , Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Receptores beta dos Hormônios Tireóideos/metabolismo , Visão Ocular/genética
8.
J Neurosci ; 29(48): 15161-8, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955368

RESUMO

Little is known of microRNA interactions with cellular pathways. Few reports have associated microRNAs with the Notch pathway, which plays key roles in nervous system development and in brain tumors. We previously implicated the Notch pathway in gliomas, the most common and aggressive brain tumors. While investigating Notch mediators, we noted microRNA-326 was upregulated following Notch-1 knockdown. This neuronally expressed microRNA was not only suppressed by Notch but also inhibited Notch proteins and activity, indicating a feedback loop. MicroRNA-326 was downregulated in gliomas via decreased expression of its host gene. Transfection of microRNA-326 into both established and stem cell-like glioma lines was cytotoxic, and rescue was obtained with Notch restoration. Furthermore, miR-326 transfection reduced glioma cell tumorigenicity in vivo. Additionally, we found microRNA-326 partially mediated the toxic effects of Notch knockdown. This work demonstrates a microRNA-326/Notch axis, shedding light on the biology of Notch and suggesting microRNA-326 delivery as a therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , MicroRNAs/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Apoptose/genética , Arrestinas/genética , Arrestinas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor Notch1/genética , Transdução de Sinais/genética , Transfecção/métodos , Ensaio Tumoral de Célula-Tronco/métodos , beta-Arrestinas
9.
Mol Cancer Ther ; 8(2): 376-85, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19190120

RESUMO

The tyrosine kinase receptor c-Met and its ligand hepatocyte growth factor (HGF) are frequently overexpressed and the tumor suppressor PTEN is often mutated in glioblastoma. Because PTEN can interact with c-Met-dependent signaling, we studied the effects of PTEN on c-Met-induced malignancy and associated molecular events and assessed the potential therapeutic value of combining PTEN restoration approaches with HGF/c-Met inhibition. We studied the effects of c-Met activation on cell proliferation, cell cycle progression, cell migration, cell invasion, and associated molecular events in the settings of restored or inhibited PTEN expression in glioblastoma cells. We also assessed the experimental therapeutic effects of combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition. PTEN significantly inhibited HGF-induced proliferation, cell cycle progression, migration, and invasion of glioblastoma cells. PTEN attenuated HGF-induced changes of signal transduction proteins Akt, GSK-3, JNK, and mTOR as well as cell cycle regulatory proteins p27, cyclin E, and E2F-1. Combining PTEN restoration to PTEN-null glioblastoma cells with c-Met and HGF inhibition additively inhibited tumor cell proliferation and cell cycle progression. Similarly, combining a monoclonal anti-HGF antibody (L2G7) with the mTOR inhibitor rapamycin had additive inhibitory effects on glioblastoma cell proliferation. Systemic in vivo delivery of L2G7 and PTEN restoration as well as systemic in vivo deliveries of L2G7 and rapamycin additively inhibited intracranial glioma xenograft growth. These preclinical studies show for the first time that PTEN loss amplifies c-Met-induced glioblastoma malignancy and suggest that combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition is worth testing in a clinical setting.


Assuntos
Glioblastoma/enzimologia , Glioblastoma/terapia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Animais , Anticorpos Monoclonais/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Humanos , Camundongos , Invasividade Neoplásica , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Carcinogenesis ; 29(5): 918-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18359760

RESUMO

The Notch pathway plays a key role in the development and is increasingly recognized for its importance in cancer. We demonstrated previously the overexpression of Notch-1 and its ligands in gliomas and showed that their knockdown inhibits glioma cell proliferation and survival. To elucidate the mechanisms downstream of Notch-1 in glioma cells, we performed microarray profiling of glioma cells transfected with Notch-1 small interfering RNA. Notable among downregulated transcripts was the epidermal growth factor receptor (EGFR), known to be overexpressed or amplified in gliomas and prominent in other cancers as well. Further studies confirmed that Notch-1 inhibition decreased EGFR messenger RNA (mRNA) and EGFR protein in glioma and other cell lines. Transfection with Notch-1 increased EGFR expression. Additionally, we found a significant correlation in levels of EGFR and Notch-1 mRNA in primary high-grade human gliomas. Subsequent experiments showed that p53, an activator of the EGFR promoter, is regulated by Notch-1. Experiments with p53-positive and -null cell lines confirmed that p53 partially mediates the effects of Notch-1 on EGFR expression. These results show for the first time that Notch-1 upregulates EGFR expression and also demonstrate Notch-1 regulation of p53 in gliomas. These observations have significant implications for understanding the mechanisms of Notch in cancer and development.


Assuntos
Receptores ErbB/genética , Regulação da Expressão Gênica , Glioma/genética , Receptor Notch1/fisiologia , Transcrição Gênica , Proteína Supressora de Tumor p53/genética , Biópsia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Genes Reporter , Genes p53 , Glioma/patologia , Humanos , Luciferases/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
11.
Endocrinology ; 143(1): 320-6, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751624

RESUMO

Cytokines have been implicated in the process of pancreatic beta-cell destruction that leads to type 1 diabetes. This study investigates the beta-cell expression of pro- and antiapoptotic proteins from the Bcl-2 family and their variation during cytokine-mediated apoptosis. Exposure of rat beta-cells to the combination of IL-1beta plus interferon-gamma causes a time-dependent increase in apoptotic cells starting after 3 d (<10% on d 3 and 28 +/- 2% on d 7). This effect was preceded by a marked down-regulation of two antiapoptotic proteins, Bcl-2 and Bax-omega (respectively reduced by 60% and 80% after 3 d), whereas no changes occurred in the expression of Bcl-x(L) and the proapoptotic protein Bax-alpha. No apoptosis or down-regulation of Bcl-2 and Bax-omega proteins was observed with individual cytokines or in the presence of N-methyl-L-arginine, an inhibitor of nitric oxide synthase. The lowered Bcl-2 protein content was associated with a decrease in Bcl-2 mRNA, which was initiated after 24 h of exposure. In MIN6 cells, the cytokine-induced suppression of Bcl-2- and Bax-omega, and apoptosis, occurred within 24 h. Primary rat beta-cells exhibited a higher expression of Bax-omega than MIN6 cells or than other rat cell types. These data suggest that suppression of the antiapoptotic proteins Bcl-2 and Bax-omega mediates cytokine-induced apoptosis of beta-cells. The beta-cell-specific expression of Bax-omega makes this protein a possible effector in the protection of this cell type against apoptosis.


Assuntos
Apoptose , Interferon gama/farmacologia , Interleucina-1/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Combinação de Medicamentos , Masculino , Óxido Nítrico/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína X Associada a bcl-2
12.
FEBS Lett ; 526(1-3): 38-42, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12208500

RESUMO

The aim of this work was to study the effect of a sustained activation of AMP-activated protein kinase (AMPK) on liver cell survival. AMPK activation was achieved by incubating FTO2B cells with AICA-riboside, which is transformed into ZMP, an AMP analogue, or by adenoviral transfection of hepatocytes with a constitutively active form of AMPK. Prolonged AMPK activation triggered apoptosis and activated c-Jun N-terminal kinase (JNK) and caspase-3. Experiments with iodotubercidin, dicoumarol and z-VAD-fmk, which inhibited AMPK, JNK and caspase activation, respectively, supported the notion that prolonged AMPK activation in liver cells induces apoptosis through an activation pathway that involves JNK and caspase-3.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Apoptose/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fígado/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aminoimidazol Carboxamida/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , Fígado/citologia , Fígado/enzimologia , Proteínas Recombinantes/metabolismo , Ribonucleotídeos/metabolismo , Transfecção
13.
Biochem Pharmacol ; 68(3): 409-16, 2004 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15242807

RESUMO

Metformin is an anti-diabetic drug that increases glucose utilization in insulin-sensitive tissues. The effect is in part attributable to a stimulation of AMP-activated protein kinase (AMPK). The present study demonstrates that metformin (0.5-2mM) also dose-dependently activates AMPK in insulin-producing MIN6 cells and in primary rat beta-cells, leading to increased phosphorylation of acetyl coA carboxylase (ACC). The maximal effect was reached within 12h and sustained up to 48h. After 24h exposure to metformin (0.5-1mM), rat beta-cells exhibited a reduced secretory and synthetic responsiveness to 10mM glucose, which was also the case following 24h culture with the AMPK-activator 5-amino-imidazole-4-carboxamide riboside (AICAR; 1mM). Longer metformin exposure (>24h) resulted in a progressive increase in apoptotic beta-cells as was also reported for AICAR; metformin-induced apoptosis was reduced by compound C, an AMPK-inhibitor. As with AICAR, metformin activated c-Jun-N-terminal kinase (JNK) and caspase-3 prior to the appearance of apoptosis. It is concluded that metformin-induced AMPK-activation in beta-cells reduces their glucose responsiveness and may, following sustained exposure, result in apoptosis.


Assuntos
Apoptose , Glucose/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Metformina/farmacologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Ativação Enzimática/efeitos dos fármacos , Feminino , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Ratos Wistar
14.
Cancer Res ; 74(5): 1541-53, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24425048

RESUMO

Great interest persists in useful prognostic and therapeutic targets in glioblastoma. In this study, we report the definition of miRNA (miR)-148a as a novel prognostic oncomiR in glioblastoma. miR-148a expression was elevated in human glioblastoma specimens, cell lines, and stem cells (GSC) compared with normal human brain and astrocytes. High levels were a risk indicator for glioblastoma patient survival. Functionally, miR-148a expression increased cell growth, survival, migration, and invasion in glioblastoma cells and GSCs and promoted GSC neurosphere formation. Two direct targets of miR-148a were identified, the EGF receptor (EGFR) regulator MIG6 and the apoptosis regulator BIM, which rescue experiments showed were essential to mediate the oncogenic activity of miR-148a. By inhibiting MIG6 expression, miR-148a reduced EGFR trafficking to Rab7-expressing compartments, which includes late endosomes and lysosomes. This process coincided with reduced degradation and elevated expression and activation of EGFR. Finally, inhibition of miR-148a strongly suppressed GSC and glioblastoma xenograft growth in vivo. Taken together, our findings provide a comprehensive analysis of the prognostic value and oncogenic function of miR-148a in glioblastoma, further defining it as a potential target for glioblastoma therapy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Camundongos , Prognóstico , Regulação para Cima/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
15.
PLoS One ; 9(5): e96239, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24805821

RESUMO

Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microRNAs in human CD133+ glioblastoma stem cells as opposed to CD133+ neural stem cells isolated from normal human brain. Using FACS sorting of low-passage cell samples followed by microRNA microarray analysis, we found 43 microRNAs that were dys-regulated in common in three separate CD133+ human glioblastomas compared to CD133+ normal neural stem cells. Among these were several microRNAs not previously associated with cancer. We then verified the microRNAs dys-regulated in glioblastoma using quantitative real time PCR and Taqman analysis of the original samples, as well as human GBM stem cell and established cell lines and many human specimens. We show that two candidate oncogenic microRNAs, miR-363 and miR-582-5p, can positively influence glioblastoma survival, as shown by forced expression of the microRNAs and their inhibitors followed by cell number assay, Caspase 3/7 assay, Annexin V apoptosis/fluorescence activated cell sorting, siRNA rescue of microRNA inhibitor treatment, as well as 3'UTR mutagenesis to show luciferase reporter rescue of the most successful targets. miR-582-5p and miR-363 are shown to directly target Caspase 3, Caspase 9, and Bim.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/genética , Glioblastoma/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Caspase 3/genética , Caspase 9/genética , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Proteínas de Membrana/genética , MicroRNAs/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/genética
16.
J Cancer Ther ; 4(8)2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24273681

RESUMO

Our previous results indicated that both the secreted and the intracellular form of full length and 1-97 N-terminal fragment of IGFBP-3 induces apoptosis in PC-3 human prostate cancer cells in an IGF-dependent and independent manner. This study was undertaken to delineate possible down-stream signaling pathways that are involved in this process. Intact IGFBP-3 and its N-terminal 1-97 fragments with or without a signal pro-peptide was fused to YFP and expressed in PC-3 human prostate cancer cells. In some cases, the putative IGF-binding site present in full length IGFBP-3 and its N-terminal fragment was also mutated. Extent of apoptosis was quantified using FACS. Up-regulation of total Stat-1 and activation of phospho-Stat-1 was shown by western blot. TGF-ß signal was measured by luciferase reporter assay. Results from inhibitor studies indicated that both the Caspase 8 and caspase 9 pathways are involved in IGFBP-3 (non-secreted form) induced apoptosis in PC-3 cells. Exogenous addition of IGFBP-3 to PC-3 cells increased Stat-1 protein expression/tyrosine phosphorylation. Interestingly, results also showed that knockdown of Stat-1 by siRNA potentiated the IGFBP-3 induced apoptosis in PC-3 cells. In addition, both full-length IGFBP-3 and its 1-97 N-terminal fragments inhibited TGFß signaling in these cells. This is the first report that compares the signal transduction pathways involved in apoptotic pathways mediated by IGFBP-3 in PC-3 human prostate cancer cells. Non-secreted form of full length IGFBP-3 and its N-terminal fragments induced apoptosis in PC-3 cells via activation of caspase 8 and caspase 9. We noted that both secreted and non-secreted forms of IGFBP-3 are involved in modulating Stat-1 and TGF-ß pathways to induce apoptotic actions in PC-3 cells. Surprisingly, only non-secreted form of IGFBP-3 and its N-terminal fragments are involved in the induction of apoptosis in PC-3 cells via caspase 8 and caspase 9 activation. These studies clearly demonstrate that secreted and non-secreted FL and its 1-97 N-terminal fragments induce apoptosis in PC-3 cells by regulating different mechanistic pathways.

17.
Neuro Oncol ; 15(12): 1652-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24158111

RESUMO

BACKGROUND: Despite advances in the treatment of the most aggressive form of brain tumor, glioblastoma, patient prognosis remains disappointing. This failure in treatment has been attributed to dysregulated oncogenic pathways, as observed in other tumors. We and others have suggested the use of microRNAs (miRs) as therapeutic tools able to target multiple pathways in glioblastoma. METHODS: This work features PCR quantification of miRs and transient transfection of many glioblastoma cell lines with miRs, followed by cell number analysis, trypan blue staining, alamarBlue assay of cell viability, caspase-3/-7 activity assay, immunoblot of cleaved poly(ADP-ribose) polymerase and fluorescence activated cell sorting and imaging of apoptotic nuclei, cell invasion assays, MRIs of glioblastoma xenografts in mice using transiently transfected cells as well as posttumor treatment with lentiviral vector encoding miR-297, and analysis of miR-297 target diacylglycerol kinase (DGK)-α including immunoblot, 3'UTR luciferase activity, and rescue with DGK-α overexpression. Cell counts and DGK-α immunoblot were also analyzed in the context of hypoxia and with overexpression of heterogeneous ribonucleoprotein L (hnRNPL). RESULTS: We identified miR-297 as a highly cytotoxic microRNA in glioblastoma, with minimal cytotoxicity to normal astrocytes. miR-297 overexpression reduced in vitro invasiveness and in vivo tumor formation. DGK-α is shown to be a miR-297 target with a critical role in miR-297 toxicity. In addition, hypoxia and its mediator hnRNPL upregulated DGK-α and buffered the cytotoxic effects of miR-297. CONCLUSION: This work shows miR-297 as a novel and physiologic regulator of cancer cell survival, largely through targeting of DGK-α, and also indicates that hypoxia ameliorates miR-297 toxicity to cancer cells.


Assuntos
Neoplasias Encefálicas/mortalidade , Diacilglicerol Quinase/metabolismo , Glioblastoma/mortalidade , Hipóxia/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Diacilglicerol Quinase/genética , Citometria de Fluxo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Discov ; 3(7): 782-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23558954

RESUMO

Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.


Assuntos
Neoplasias Encefálicas/genética , Diacilglicerol Quinase/genética , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Diacilglicerol Quinase/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Terapia de Alvo Molecular , Piperidinas/administração & dosagem , Pirimidinonas/administração & dosagem , Quinazolinonas/administração & dosagem , RNA Interferente Pequeno , Tiazóis/administração & dosagem
19.
Neuro Oncol ; 14(10): 1215-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22962413

RESUMO

The Notch pathway is dysregulated and a potential target in glioblastoma multiforme (GBM). Currently available Notch inhibitors block γ-secretase, which is necessary for Notch processing. However, Notch is first cleaved by α-secretase outside the plasma membrane, via a disintegrin and metalloproteinase-10 and -17. In this work, we used a potent α-secretase inhibitor (ASI) to test inhibition of glioblastoma growth and inhibition of Notch and of both novel and known Notch targets. Featured in this study are luciferase reporter assays and immunoblot, microarray analysis, chromatin immunoprecipitation (ChIP), quantitative real-time PCR, cell number assay, bromodeoxyuridine incorporation, plasmid rescue, orthotopic xenograft model, and local delivery of treatment with convection-enhanced delivery using nanoparticles, as well as survival, MRI, and ex vivo luciferase assay. A CBF1-luciferase reporter assay as well as an immunoblot of endogenous Notch revealed Notch inhibition by the ASI. Microarray analysis, quantitative real-time PCR, and ChIP of ASI and γ-secretase inhibitor (GSI) treatment of GBM cells identified known Notch pathway targets, as well as novel Notch targets, including YKL-40 and leukemia inhibitory factor. Finally, we found that local nanoparticle delivery of ASIs but not GSIs increased survival time significantly in a GBM stem cell xenograft treatment model, and ASI treatment resulted in decreased tumor size and Notch activity. This work indicates α-secretase as an alternative to γ-secretase for inhibition of Notch in GBM and possibly other cancers as well, and it identifies novel Notch targets with biologic relevance and potential as biomarkers.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Neoplasias Encefálicas/patologia , Proliferação de Células , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Técnicas In Vitro , Luciferases/metabolismo , Magnetismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Compostos de Espiro/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Neuro Oncol ; 12(11): 1102-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20667897

RESUMO

Emerging studies have identified microRNAs (miRNAs) as possible therapeutic tools for the treatment of glioma, the most aggressive brain tumor. Their important targets in this tumor are not well understood. We recently found that the Notch pathway is a target of miRNA-326. Ectopic expression of miRNA-326 in glioma and glioma stem cells induced their apoptosis and reduced their metabolic activity. Computational target gene prediction revealed pyruvate kinase type M2 (PKM2) as another target of miRNA-326. PKM2 has recently been shown to play a key role in cancer cell metabolism. To investigate whether it might be a functionally important target of miR-326, we used RNA interference to knockdown PKM2 expression in glioma cells. Transfection of the established glioma and glioma stem cells with PKM2 siRNA reduced their growth, cellular invasion, metabolic activity, ATP and glutathione levels, and activated AMP-activated protein kinase. The cytotoxic effects exhibited by PKM2 knockdown in glioma and glioma stem cells were not observed in transformed human astrocytes. Western blot analysis of human glioblastoma specimens showed high levels of PKM2 protein, but none was observed in normal brain samples. Strikingly, cells with high levels of PKM2 expressed lower levels of miR-326, suggestive of endogenous regulation of PKM2 by miR-326. Our data suggest PKM2 inhibition as a therapy for glioblastoma, with the potential for minimal toxicity to the brain.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , MicroRNAs/genética , Piruvato Quinase/genética , Western Blotting , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Piruvato Quinase/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa