Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2216774120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888662

RESUMO

Cells regularly experience fluid flow in natural systems. However, most experimental systems rely on batch cell culture and fail to consider the effect of flow-driven dynamics on cell physiology. Using microfluidics and single-cell imaging, we discover that the interplay of physical shear rate (a measure of fluid flow) and chemical stress trigger a transcriptional response in the human pathogen Pseudomonas aeruginosa. In batch cell culture, cells protect themselves by quickly scavenging the ubiquitous chemical stressor hydrogen peroxide (H2O2) from the media. In microfluidic conditions, we observe that cell scavenging generates spatial gradients of H2O2. High shear rates replenish H2O2, abolish gradients, and generate a stress response. Combining mathematical simulations and biophysical experiments, we find that flow triggers an effect like "wind-chill" that sensitizes cells to H2O2 concentrations 100 to 1,000 times lower than traditionally studied in batch cell culture. Surprisingly, the shear rate and H2O2 concentration required to generate a transcriptional response closely match their respective values in the human bloodstream. Thus, our results explain a long-standing discrepancy between H2O2 levels in experimental and host environments. Finally, we demonstrate that the shear rate and H2O2 concentration found in the human bloodstream trigger gene expression in the blood-relevant human pathogen Staphylococcus aureus, suggesting that flow sensitizes bacteria to chemical stress in natural environments.


Assuntos
Bactérias , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Bactérias/metabolismo , Microfluídica , Técnicas de Cultura Celular por Lotes , Pseudomonas aeruginosa/genética
2.
EMBO Rep ; 24(10): e57369, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37501563

RESUMO

Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown. Identification of this mechanism has been difficult because conventional mutagenesis approaches are unable to inhibit trans-complementation by secreted factors between mutants. To overcome this obstacle, we utilized a technique called droplet Tn-seq (dTn-seq), which uses microfluidics to isolate individual transposon mutants in oil droplets, eliminating trans-complementation between bacteria. Using this approach, we first demonstrated the applicability of dTn-seq to identify genes with secreted functions. We then applied dTn-seq to identify an AcrAB efflux system as required for growth in metal-limited conditions. Finally, we showed this efflux system is the primary yersiniabactin secretion mechanism and required for virulence during bubonic and pneumonic plague. Together, these studies have revealed the yersiniabactin secretion mechanism that has eluded researchers for over 30 years and identified a potential therapeutic target for bacteria that use yersiniabactin for metal acquisition.


Assuntos
Peste , Yersinia pestis , Humanos , Yersinia pestis/genética , Peste/genética , Peste/microbiologia , Fenóis , Tiazóis/farmacologia , Metais , Proteínas de Bactérias/genética
3.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716262

RESUMO

Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.


Assuntos
Fenóis/farmacologia , Peste/metabolismo , Tiazóis/farmacologia , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Feminino , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fenóis/metabolismo , Peste/microbiologia , Sideróforos/metabolismo , Tiazóis/metabolismo , Virulência , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidade
4.
EMBO Rep ; 21(5): e45832, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202364

RESUMO

The success of Staphylococcus aureus as a pathogen is due to its capability of fine-tuning its cellular physiology to meet the challenges presented by diverse environments, which allows it to colonize multiple niches within a single vertebrate host. Elucidating the roles of energy-yielding metabolic pathways could uncover attractive therapeutic strategies and targets. In this work, we seek to determine the effects of disabling NADH-dependent aerobic respiration on the physiology of S. aureus. Differing from many pathogens, S. aureus has two type-2 respiratory NADH dehydrogenases (NDH-2s) but lacks the respiratory ion-pumping NDHs. Here, we show that the NDH-2s, individually or together, are not essential either for respiration or growth. Nevertheless, their absence eliminates biofilm formation, production of α-toxin, and reduces the ability to colonize specific organs in a mouse model of systemic infection. Moreover, we demonstrate that the reason behind these phenotypes is the alteration of the fatty acid metabolism. Importantly, the SaeRS two-component system, which responds to fatty acids regulation, is responsible for the link between NADH-dependent respiration and virulence in S. aureus.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , NAD , Staphylococcus aureus/genética , Virulência
5.
J Bacteriol ; 203(24): e0042221, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606376

RESUMO

Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The results of current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signal transduction in response to nutritional immunity and support the previous observation indicating that ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus, to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. The results of this study reveal that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Glucose/farmacologia , Complexo Antígeno L1 Leucocitário/farmacologia , Proteínas Quinases/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Glucose/administração & dosagem , Glucose/metabolismo , Proteínas Quinases/genética , Staphylococcus aureus/genética
6.
PLoS Pathog ; 15(7): e1007971, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31344131

RESUMO

The ability of Staphylococcus aureus and other pathogens to consume glucose is critical during infection. However, glucose consumption increases the cellular demand for manganese sensitizing S. aureus to host-imposed manganese starvation. The current investigations were undertaken to elucidate how S. aureus copes with the need to consume glucose when metal-limited by the host. A critical component of host defense is production of the manganese binding protein calprotectin. S. aureus has two variants of phosphoglycerate mutase, one of which is manganese-dependent, GpmI, and another that is manganese-independent, GpmA. Leveraging the ability to impose metal starvation in culture utilizing calprotectin revealed that the loss of GpmA, but not GpmI, sensitized S. aureus to manganese starvation. Metabolite feeding experiments revealed that the growth defect of GpmA when manganese-starved was due to a defect in glycolysis and not gluconeogenesis. Loss of GpmA reduces the ability of S. aureus to cause invasive disease in wild type mice. However, GpmA was dispensable in calprotectin-deficient mice, which have defects in manganese sequestration, indicating that this isozyme contributes to the ability of S. aureus to overcome manganese limitation during infection. Cumulatively, these observations suggest that expressing a metal-independent variant enables S. aureus to consume glucose while mitigating the negative impact that glycolysis has on the cellular demand for manganese. S. aureus is not the only bacterium that expresses manganese-dependent and -independent variants of phosphoglycerate mutase. Similar results were also observed in culture with Salmonella enterica serovar Typhimurium mutants lacking the metal-independent isozyme. These similar observations in both Gram-positive and Gram-negative pathogens suggest that expression of metal-independent glycolytic isozymes is a common strategy employed by bacteria to survive in metal-limited environments, such as the host.


Assuntos
Metais/metabolismo , Fosfoglicerato Mutase/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Genética , Glicólise , Isoenzimas/genética , Isoenzimas/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoglicerato Mutase/genética , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Virulência
7.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32868400

RESUMO

Phosphate is an essential nutrient that Staphylococcus aureus and other pathogens must acquire from the host during infection. While inorganic monophosphate (Pi) is the preferred source of this nutrient, bacteria can also obtain it from phosphate-containing organic molecules. The Pi-responsive regulator PhoPR is necessary for S. aureus to cause infection, suggesting that Pi is not freely available during infection and that this nutrient must be obtained from other sources. However, the organophosphates from which S. aureus can obtain phosphate are unknown. We evaluated the ability of 58 phosphorus-containing molecules to serve as phosphate sources for S. aureus Forty-six of these compounds, including phosphorylated amino acids, sugars, and nucleotides, supported growth. Among the organophosphate sources was glycerol-3-phosphate (G3P), which is commonly found in the mammalian host. Differing from the model organism Escherichia coli, S. aureus does not import G3P intact to obtain Pi Instead, S. aureus relies on the phosphatase PhoB to release Pi from G3P, which is subsequently imported by Pi transporters. To determine if this strategy is used by S. aureus to extract phosphate from other phosphate sources, we assessed the ability of PhoB- and Pi transporter-deficient strains to grow on the same library of phosphorus-containing molecules. Sixty percent of the substrates (28/46) relied on the PhoB/Pi transporter pathway, and an additional 10/46 (22%) were PhoB independent but still required Pi transport through the Pi transporters. Cumulatively, these results suggest that in Pi-limited environments, S. aureus preferentially generates Pi from organophosphates and then relies on Pi transporters to import this nutrient.IMPORTANCE For bacteria, the preferred form of the essential nutrient phosphate is inorganic monophosphate (Pi), but phosphate can also be extracted from a variety of phosphocompounds. Pathogens, including Staphylococcus aureus, experience Pi limitation within the host, suggesting that the use of alternative phosphate sources is important during infection. However, the alternative phosphate sources that can be used by S. aureus and others remain largely unexplored. We screened a library of phosphorus-containing compounds for the ability to support growth as a phosphate source. S. aureus could use a variety of phosphocompounds, including nucleotides, phosphosugars, and phosphoamino acids. Subsequent genetic analysis determined that a majority of these alternative phosphate sources are first processed extracellularly to liberate Pi, which is then imported through Pi transporters.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Organofosfatos/metabolismo , Fosfatos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento
8.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32071094

RESUMO

The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.


Assuntos
Imidazóis/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Zinco/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
9.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32205403

RESUMO

To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.


Assuntos
Homeostase , Interações Hospedeiro-Patógeno , Fenômenos Fisiológicos da Nutrição , Fosfatos/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Suscetibilidade a Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/metabolismo , Metais/metabolismo
10.
Infect Immun ; 87(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30348827

RESUMO

During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.


Assuntos
Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Interações Hospedeiro-Patógeno , Complexo Antígeno L1 Leucocitário/metabolismo , Estresse Oxidativo , Virulência
11.
PLoS Pathog ; 13(1): e1006125, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103306

RESUMO

Staphylococcus aureus is a devastating mammalian pathogen for which the development of new therapeutic approaches is urgently needed due to the prevalence of antibiotic resistance. During infection pathogens must overcome the dual threats of host-imposed manganese starvation, termed nutritional immunity, and the oxidative burst of immune cells. These defenses function synergistically, as host-imposed manganese starvation reduces activity of the manganese-dependent enzyme superoxide dismutase (SOD). S. aureus expresses two SODs, denoted SodA and SodM. While all staphylococci possess SodA, SodM is unique to S. aureus, but the advantage that S. aureus gains by expressing two apparently manganese-dependent SODs is unknown. Surprisingly, loss of both SODs renders S. aureus more sensitive to host-imposed manganese starvation, suggesting a role for these proteins in overcoming nutritional immunity. In this study, we have elucidated the respective contributions of SodA and SodM to resisting oxidative stress and nutritional immunity. These analyses revealed that SodA is important for resisting oxidative stress and for disease development when manganese is abundant, while SodM is important under manganese-deplete conditions. In vitro analysis demonstrated that SodA is strictly manganese-dependent whereas SodM is in fact cambialistic, possessing equal enzymatic activity when loaded with manganese or iron. Cumulatively, these studies provide a mechanistic rationale for the acquisition of a second superoxide dismutase by S. aureus and demonstrate an important contribution of cambialistic SODs to bacterial pathogenesis. Furthermore, they also suggest a new mechanism for resisting manganese starvation, namely populating manganese-utilizing enzymes with iron.


Assuntos
Ferro/metabolismo , Manganês/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade , Superóxido Dismutase/metabolismo , Animais , Cromatografia por Troca Iônica , Modelos Animais de Doenças , Complexo Antígeno L1 Leucocitário/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/metabolismo
12.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061377

RESUMO

Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Virulência
13.
Infect Immun ; 86(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084897

RESUMO

During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte de Fosfato/genética , Fosfatos/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/metabolismo
14.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29133349

RESUMO

The opportunistic fungal pathogen Candida albicans acquires essential metals from the host, yet the host can sequester these micronutrients through a process known as nutritional immunity. How the host withholds metals from C. albicans has been poorly understood; here we examine the role of calprotectin (CP), a transition metal binding protein. When CP depletes bioavailable Zn from the extracellular environment, C. albicans strongly upregulates ZRT1 and PRA1 for Zn import and maintains constant intracellular Zn through numerous cell divisions. We show for the first time that CP can also sequester Cu by binding Cu(II) with subpicomolar affinity. CP blocks fungal acquisition of Cu from serum and induces a Cu starvation stress response involving SOD1 and SOD3 superoxide dismutases. These transcriptional changes are mirrored when C. albicans invades kidneys in a mouse model of disseminated candidiasis, although the responses to Cu and Zn limitations are temporally distinct. The Cu response progresses throughout 72 h, while the Zn response is short-lived. Notably, these stress responses were attenuated in CP null mice, but only at initial stages of infection. Thus, Zn and Cu pools are dynamic at the host-pathogen interface and CP acts early in infection to restrict metal nutrients from C. albicans.


Assuntos
Candida albicans/efeitos dos fármacos , Cobre/metabolismo , Complexo Antígeno L1 Leucocitário/farmacologia , Zinco/metabolismo , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
PLoS Pathog ; 12(11): e1006040, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27902777

RESUMO

During infection the host imposes manganese and zinc starvation on invading pathogens. Despite this, Staphylococcus aureus and other successful pathogens remain capable of causing devastating disease. However, how these invaders adapt to host-imposed metal starvation and overcome nutritional immunity remains unknown. We report that ArlRS, a global staphylococcal virulence regulator, enhances the ability of S. aureus to grow in the presence of the manganese-and zinc-binding innate immune effector calprotectin. Utilization of calprotectin variants with altered metal binding properties revealed that strains lacking ArlRS are specifically more sensitive to manganese starvation. Loss of ArlRS did not alter the expression of manganese importers or prevent S. aureus from acquiring metals. It did, however, alter staphylococcal metabolism and impair the ability of S. aureus to grow on amino acids. Further studies suggested that relative to consuming glucose, the preferred carbon source of S. aureus, utilizing amino acids reduced the cellular demand for manganese. When forced to use glucose as the sole carbon source S. aureus became more sensitive to calprotectin compared to when amino acids are provided. Infection experiments utilizing wild type and calprotectin-deficient mice, which have defects in manganese sequestration, revealed that ArlRS is important for disease when manganese availability is restricted but not when this essential nutrient is freely available. In total, these results indicate that altering cellular metabolism contributes to the ability of pathogens to resist manganese starvation and that ArlRS enables S. aureus to overcome nutritional immunity by facilitating this adaptation.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune/fisiologia , Proteínas Quinases/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Complexo Antígeno L1 Leucocitário/metabolismo , Manganês/metabolismo , Camundongos
16.
PLoS Pathog ; 10(10): e1004450, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330071

RESUMO

Transition metals are necessary for all forms of life including microorganisms, evidenced by the fact that 30% of all proteins are predicted to interact with a metal cofactor. Through a process termed nutritional immunity, the host actively sequesters essential nutrient metals away from invading pathogenic bacteria. Neutrophils participate in this process by producing several metal chelating proteins, including lactoferrin and calprotectin (CP). As neutrophils are an important component of the inflammatory response directed against the bacterium Helicobacter pylori, a major risk factor for gastric cancer, it was hypothesized that CP plays a role in the host response to H. pylori. Utilizing a murine model of H. pylori infection and gastric epithelial cell co-cultures, the role CP plays in modifying H. pylori -host interactions and the function of the cag Type IV Secretion System (cag T4SS) was investigated. This study indicates elevated gastric levels of CP are associated with the infiltration of neutrophils to the H. pylori-infected tissue. When infected with an H. pylori strain harboring a functional cag T4SS, calprotectin-deficient mice exhibited decreased bacterial burdens and a trend toward increased cag T4SS -dependent inflammation compared to wild-type mice. In vitro data demonstrate that culturing H. pylori with sub-inhibitory doses of CP reduces the activity of the cag T4SS and the biogenesis of cag T4SS-associated pili in a zinc-dependent fashion. Taken together, these data indicate that zinc homeostasis plays a role in regulating the proinflammatory activity of the cag T4SS.


Assuntos
Proteínas de Bactérias/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Complexo Antígeno L1 Leucocitário/metabolismo , Zinco/metabolismo , Animais , Técnicas de Cocultura/métodos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Homeostase/fisiologia , Camundongos , Fatores de Risco , Neoplasias Gástricas/metabolismo
17.
Proc Natl Acad Sci U S A ; 110(10): 3841-6, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431180

RESUMO

The S100A8/S100A9 heterodimer calprotectin (CP) functions in the host response to pathogens through a mechanism termed "nutritional immunity." CP binds Mn(2+) and Zn(2+) with high affinity and starves bacteria of these essential nutrients. Combining biophysical, structural, and microbiological analysis, we identified the molecular basis of Mn(2+) sequestration. The asymmetry of the CP heterodimer creates a single Mn(2+)-binding site from six histidine residues, which distinguishes CP from all other Mn(2+)-binding proteins. Analysis of CP mutants with altered metal-binding properties revealed that, despite both Mn(2+) and Zn(2+) being essential metals, maximal growth inhibition of multiple bacterial pathogens requires Mn(2+) sequestration. These data establish the importance of Mn(2+) sequestration in defense against infection, explain the broad-spectrum antimicrobial activity of CP relative to other S100 proteins, and clarify the impact of metal depletion on the innate immune response to infection.


Assuntos
Imunidade Inata , Complexo Antígeno L1 Leucocitário/química , Complexo Antígeno L1 Leucocitário/imunologia , Manganês/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Calgranulina A/química , Calgranulina A/genética , Calgranulina A/imunologia , Calgranulina B/química , Calgranulina B/genética , Calgranulina B/imunologia , Cristalografia por Raios X , Histidina/química , Interações Hospedeiro-Patógeno/imunologia , Humanos , Complexo Antígeno L1 Leucocitário/genética , Complexo Antígeno L1 Leucocitário/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Zinco/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(20): 8206-11, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23630262

RESUMO

Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy.


Assuntos
Fermentação , Regulação Bacteriana da Expressão Gênica , Heme/biossíntese , Naftóis/farmacologia , Pirazóis/farmacologia , Staphylococcus aureus/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Técnicas de Química Combinatória , Desenho de Fármacos , Glicólise , Heme Oxigenase (Desciclizante)/metabolismo , Concentração Inibidora 50 , Leucócitos/citologia , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Fagócitos/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
19.
Infect Immun ; 83(4): 1684-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667262

RESUMO

In bacteria, the intracellular levels of metals are mediated by tightly controlled acquisition and efflux systems. This is particularly true of copper, a trace element that is universally toxic in excess. During infection, the toxic properties of copper are exploited by the mammalian host to facilitate bacterial clearance. To better understand the role of copper during infection, we characterized the contribution of the cop operon to copper homeostasis and virulence in Streptococcus pneumoniae. Deletion of either the exporter, encoded by copA, or the chaperone, encoded by cupA, led to hypersensitivity to copper stress. We further demonstrated that loss of the copper exporter encoded by copA led to decreased virulence in pulmonary, intraperitoneal, and intravenous models of infection. Deletion of copA resulted in enhanced macrophage-mediated bacterial clearance in vitro. The attenuation phenotype of the copA mutant in the lung was found to be dependent on pulmonary macrophages, underscoring the importance of copper efflux in evading immune defenses. Overall, these data provide insight into the role of the cop operon in pneumococcal pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae/patogenicidade , Animais , Bacteriemia/genética , Bacteriemia/patologia , Aderência Bacteriana , Linhagem Celular , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Chaperonas Moleculares/metabolismo , Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia
20.
Mol Microbiol ; 94(6): 1343-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318663

RESUMO

How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Sulfetos/metabolismo , Proteínas de Bactérias/química , Cobre/metabolismo , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Sulfeto de Hidrogênio/farmacologia , Óperon , Proteínas Repressoras/química , Staphylococcus aureus/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa