Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 12(31): 6547-56, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27426110

RESUMO

The temperature response of micellar aggregates of poly(n-butyl acrylate)-b-poly(N-isopropylacrylamide)-carboxylic acid (PnBA-b-PNIPAM-COOH) end-functionalized diblock copolymers in aqueous solutions is investigated by small angle neutron scattering and light scattering techniques. The particular micellar aggregates present -COOH groups at their surface due to the molecular architecture of the block copolymer chains. Above the critical solution temperature micellar aggregation depends on the initial solution concentration, while at the highest polymer content intermicellar correlations are observed as a hard-sphere interaction intensity peak. Addition of lysozyme induces this morphological transition even at low concentrations. The scattering profiles are consistent with lysozyme accumulating in the vicinity of the micellar cores, a finding that is supported by measurements in lysozyme contrast matched solvent. Upon temperature increase negatively charged units are exposed to the surface of the aggregates during thermal transition which is a stabilizing force against the phase separating coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM).


Assuntos
Acrilatos/química , Resinas Acrílicas/química , Micelas , Muramidase/química , Polímeros/química , Temperatura
2.
Polymers (Basel) ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177350

RESUMO

Block copolymers synthesized via Atom Transfer Radical Polymerization from alkyl acrylate and t-butyl acrylate and the subsequent hydrolysis of the t-butyl acrylate to acrylic acid were systematically varied with respect to their hydrophobic part by the variation in the alkyl chain length and the degree of polymerisation in this block. Depending on the architecture of the hydrophobic part, they had a more or less pronounced tendency to form copolymer micelles in an aqueous solution. They were employed for the preparation of IPECs by mixing the copolymer aggregates with the polycations polydiallyldimethylammonium chloride (PDADMAC) or q-chit. The IPEC structure as a function of the composition was investigated by Static Light and Small Angle Neutron Scattering. For weakly-associated block copolymers (short alkyl chain), complexation with polycation led to the formation of globular complexes, while already existing micelles (long alkyl chain) grew further in mass. In general, aggregates became larger upon the addition of further polycation, but this growth was much more pronounced for PDADMAC compared to q-chit, thereby leading to the formation of clusters of aggregates. Accordingly, the structure of such IPECs with a hydrophobic block depended largely on the type of complexing polyelectrolyte, which allowed for controlling the structural organisation via the molecular architecture of the two oppositely charged polyelectrolytes.

3.
Small ; 8(15): 2381-93, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22549909

RESUMO

Hybrid magnetic drug nanocarriers are prepared via a self-assembly process of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate) (p(MAA-g-EGMA)) on growing iron oxide nanocrystallites. The nanocarriers successfully merge together bio-repellent properties, pronounced magnetic response, and high loading capacity for the potent anticancer drug doxorubicin (adriamicin), in a manner not observed before in such hybrid colloids. High magnetic responses are accomplished by engineering the size of the magnetic nanocrystallites (∼13.5 nm) following an aqueous single-ferrous precursor route, and through adjustment of the number of cores in each colloidal assembly. Complementing conventional magnetometry, the magnetic response of the nanocarriers is evaluated by magnetophoretic experiments providing insight into their internal organization and on their response to magnetic manipulation. The structural organization of the graft-copolymer, locked on the surface of the nanocrystallites, is further probed by small-angle neutron scattering on single-core colloids. Analysis showed that the MAA segments selectively populate the area around the magnetic nanocrystallites, while the poly(ethylene glycol)-grafted chains are arranged as protrusions, pointing towards the aqueous environment. These nanocarriers are screened at various pHs and in highly salted media by light scattering and electrokinetic measurements. According to the results, their stability is dramatically enhanced, as compared to uncoated nanocrystallites, owing to the presence of the external protective PEG canopy. The nanocarriers are also endowed with bio-repellent properties, as evidenced by stability assays using human blood plasma as the medium.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Magnetismo , Doxorrubicina/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Polietilenoglicóis/química , Termogravimetria
4.
J Colloid Interface Sci ; 534: 430-439, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245340

RESUMO

HYPOTHESIS: Ionic dendronic head groups possess very different structural features than simple surfactant head groups. Accordingly, their self-assembly behavior is expected to differ from that of conventional surfactants. The number of generations of the headgroup should play a particularly relevant role. EXPERIMENTS: A novel type of surfactants with different dendronic head groups (cationic and anionic) was studied in this work. A systematic variation of the number of generations of the head group (n = 1, 2, and 3), of the head group charge (cationic and anionic), and of the length of the hydrophobic chain (hexanoyl and hexadecanoyl chains) was performed and the self-assembly behavior probed by means of small-angle neutron scattering (SANS) in order to obtain detailed structural insights. FINDINGS: The analysis of the scattering data shows that the general packing parameter concept applies also to dendrimeric surfactants and a larger head group results in smaller aggregates. However, in contrast to conventional surfactants, increasing the head group size results in a stronger tendency to self-aggregate, as a consequence of the head group's partly hydrophobic character. Another peculiarity of the self-assembled aggregates, is the low aggregation numbers and the high water content within the micelle, as a result of the highly branched head group.

5.
Front Chem ; 7: 285, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31119123

RESUMO

Here we report a thorough investigation of the microscopic and mesoscopic structural organization in a series of triphilic fluorinated room temperature ionic liquids, namely [1-alkyl,3-methylimidazolium][(trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide], with alkyl = ethyl, butyl, octyl ([Cnmim][IM14], n = 2, 4, 8), based on the synergic exploitation of X-ray and Neutron Scattering and Molecular Dynamics simulations. This study reveals the strong complementarity between X-ray/neutron scattering in detecting the complex segregated morphology in these systems at mesoscopic spatial scales. The use of MD simulations delivering a very good agreement with experimental data allows us to gain a robust understanding of the segregated morphology. The structural scenario is completed with determination of dynamic properties accessing the diffusive behavior and a relaxation map is provided for [C2mim][IM14] and [C8mim][IM14], highlighting their natures as fragile glass formers.

6.
J Phys Chem B ; 110(4): 1513-5, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16471706

RESUMO

Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.

7.
Sci Rep ; 6: 28167, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321149

RESUMO

We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

8.
J Colloid Interface Sci ; 440: 204-10, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460707

RESUMO

Surfactant-based aqueous fluids, such as micellar solutions and microemulsions, are effective, safe and selective media for cleaning operations in conservation of cultural heritage. The search for better-performing systems and eco-friendly cleaning systems is currently a major goal in conservation science. We report here on a ternary o/w microemulsion, composed of diethyl carbonate (DC) as the oil phase and N,N-Dimethyldodecan-1-amine oxide (DDAO) as the surfactant. DDAO is a well known and widely used detergent and solubilizing agent, selected here for its degradability and eco-compatibility. Due to its nonionic/cationic nature, it can be used also when nonionic-based formulations become ineffective because of clouding and phase separation. Moreover, DDAO is insensitive to the presence of divalent metal ions, usually abundant in wall paintings substrates. Small-Angle Neutron Scattering (SANS) provided detailed information about the nanostructure of the surfactant aggregates. Finally, the cleaning effectiveness of the nanofluid was assessed both on fresco mock-ups and on real wall paintings conserved in the archeological site of Tulum, Mexico. Here, conservators successfully used the microemulsion to remove naturally aged films of complex polymer mixtures from the works of art surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa