Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(2): 289-298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270131

RESUMO

Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.


Assuntos
Epidemias , Peste , Yersinia pestis , Humanos , Peste/epidemiologia , Yersinia pestis/genética , Madagáscar/epidemiologia , Genômica
2.
bioRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948873

RESUMO

Genomic diversity in a pathogen population is the foundation for evolution and adaptations in virulence, drug resistance, pathogenesis, and immune evasion. Characterizing, analyzing, and understanding population-level diversity is also essential for epidemiological and forensic tracking of sources and revealing detailed pathways of transmission and spread. For bacteria, culturing, isolating, and sequencing the large number of individual colonies required to adequately sample diversity can be prohibitively time-consuming and expensive. While sequencing directly from a mixed population will show variants among reads, they cannot be linked to reveal allele combinations associated with particular traits or phylogenetic inheritance patterns. Here, we describe the theory and method of how population sequencing directly from a mixed sample can be used in conjunction with sequencing a very small number of colonies to describe the phylogenetic diversity of a population without haplotype reconstruction. To demonstrate the utility of population sequencing in capturing phylogenetic diversity, we compared isogenic clones to population sequences of Burkholderia pseudomallei from the sputum of a single patient. We also analyzed population sequences of Staphylococcus aureus derived from different people and different body sites. Sequencing results confirm our ability to capture and characterize phylogenetic diversity in our samples. Our analyses of B. pseudomallei populations led to the surprising discovery that the pathogen population is highly structured in sputum, suggesting that for some pathogens, sputum sampling may preserve structuring in the lungs and thus present a non-invasive alternative to understanding colonization, movement, and pathogen/host interactions. Our analyses of S. aureus samples show how comparing phylogenetic diversity across populations can reveal directionality of transmission between hosts and across body sites, demonstrating the power and utility for characterizing the spread of disease and identification of reservoirs at the finest levels. We anticipate that population sequencing and analysis can be broadly applied to accelerate research in a broad range of fields reliant on a foundational understanding of population diversity.

3.
Microbiol Spectr ; : e0100824, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162534

RESUMO

Identifying improved treatments for severe and refractory coccidioidomycosis (Valley fever) is needed. This endemic fungal disease is common in North and South America, and cases have increased substantially over the last 30 years. The current standard of care, oral daily fluconazole, often fails to completely eradicate Coccidioides infection; however, the high cost of identifying new compounds effective in treating Valley fever is a barrier to improving treatment. Therefore, repurposing existing pharmaceutical agents in combination with fluconazole therapy is an attractive option. We screened the Library of Pharmacologically Active Compounds (LOPAC) small molecule library for compounds that inhibited fungal growth in vitro and determined IC50 values for a subset of compounds. Based on these findings, we tested a small subset of these agents to validate the screen, as well as to test the performance of fluconazole in a combination therapy approach, as compared with fluconazole alone, in a murine model. We observed that combination therapy of tamoxifen:fluconazole and sertraline:fluconazole significantly reduced the burden of live fungus in the lung compared with fluconazole alone, and we observed reduced or nonexistent dissemination. These results suggest that tamoxifen and sertraline may be repurposed as adjunctive agents in the treatment of this important fungal disease. IMPORTANCE: Developing new drugs, especially for regional orphan diseases, such as Valley Fever, is a slow and costly endeavor. However, there is a wealth of FDA-approved drugs available for repurposing, offering a more economical and expedited approach to improve treatment. Those existing compounds with antifungal properties can become novel therapies with relative ease: a considerable advantage for patients in need of alternative treatment. Despite the scope of remaining tasks, our comprehensive screening of potential candidates has revealed promising combinations for further exploration. This effort outlines a practical pipeline for Valley fever drug screening and identifies viable drug combinations that could impact patients more rapidly than single drug development pathways.

4.
Microbiol Spectr ; 12(6): e0413923, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651881

RESUMO

Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Infecções Urinárias , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/diagnóstico , Infecções Urinárias/microbiologia , Infecções Urinárias/diagnóstico , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/classificação , Genótipo , Sequenciamento Completo do Genoma/métodos , Técnicas de Genotipagem/métodos , Reação em Cadeia da Polimerase Multiplex/métodos
5.
mBio ; 15(6): e0058124, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683013

RESUMO

Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.


Assuntos
Campylobacter coli , Campylobacter jejuni , Epistasia Genética , Transferência Genética Horizontal , Genoma Bacteriano , Recombinação Genética , Campylobacter jejuni/genética , Campylobacter coli/genética , Evolução Molecular , Adaptação Fisiológica/genética , Adaptação Biológica/genética
6.
MBio ; 10(6): e01976-19, 2019.
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib17285

RESUMO

Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions. IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii. These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.

7.
MBio, v. 10, n. 6, p. e01976-19, nov. 2019
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2876

RESUMO

Coccidioides posadasii is a pathogenic fungus that causes coccidioidomycosis in many arid regions of the Americas. One of these regions is bordered by the Caribbean Sea, and the surrounding landscape may play an important role in the dispersion of C. posadasii across South America through southeastern Mexico, Honduras, Guatemala, and Venezuela. Comparative phylogenomic analyses of C. posadasii reveal that clinical strains from Venezuela are genetically distinct from the North American populations found in (i) Arizona and (ii) Texas, Mexico, and the rest of South America (TX/MX/SA). We find evidence for admixture between the Venezuela and the North American populations of C. posadasii in Central America. Additionally, the proportion of Venezuelan alleles in the admixed population decreases as latitude (and distance from Venezuela) increases. Our results indicate that the population in Venezuela may have been subjected to a recent bottleneck and shows a strong population structure. This analysis provides insight into potential for Coccidioides spp. to invade new regions. IMPORTANCE Valley Fever is a fungal disease caused by two species of fungi: Coccidioides immitis and C. posadasii. These fungi are found throughout the arid regions of North and South America; however, our understanding of genetic diversity and disease in South America is limited. In this report, we analyze 10 new genomes of Coccidioides posadasii from regions bordering the Caribbean Sea. We show that these populations are distinct and that isolates from Venezuela are likely a result of a recent bottleneck. These data point to patterns that might be observed when investigating recently established populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa