Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344911

RESUMO

The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications.

2.
J Environ Manage ; 257: 110005, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989961

RESUMO

Soil improvement measures need to be ecologically credible, socially acceptable and economically affordable if they are to enter widespread use. However, in real world decision contexts not all measures can sufficiently meet these criteria. As such, developing, selecting and using appropriate tools to support more systematic appraisal of soil improvement measures in different decision-making contexts represents an important challenge. Tools differ in their aims, ranging from those focused on appraising issues of cost-effectiveness, wider ecosystem services impacts and adoption barriers/opportunities, to those seeking to foster participatory engagement and social learning. Despite the growing complexity of the decision-support tool landscape, comprehensive guidance for selecting tools that are best suited to appraise soil improvement measures, as well as those well-adapted to enable participatory deployment, has generally been lacking. We address this gap using the experience and survey data from an EU-funded project (RECARE: Preventing and REmediating degradation of soils in Europe through land CARE). RECARE applied different socio-cultural, biophysical and monetary appraisal tools to assess the costs, benefits and adoption of soil improvement measures across Europe. We focused on these appraisal tools and evaluated their performance against three broad attributes that gauge their differences and suitability for widespread deployment to aid stakeholder decision making in soil management. Data were collected using an online questionnaire administered to RECARE researchers. Although some tools worked better than others across case studies, the information collated was used to provide guiding strategies for choosing appropriate tools, considering resources and data availability, characterisation of uncertainty, and the purpose for which a specific soil improvement measure is being developed or promoted. This paper provides insights to others working in practical soil improvement contexts as to why getting the tools right matters. It demonstrates how use of the right tools can add value to decision-making in ameliorating soil threats, supporting the sustainable management of the services that our soil ecosystems provide.


Assuntos
Ecossistema , Solo , Tomada de Decisões , Europa (Continente) , Resolução de Problemas
3.
Sci Total Environ ; 820: 153282, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35066033

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds, found ubiquitously in all environmental compartments. PAHs are considered hazardous pollutants, being of concern to both the environmental and human health. In the aquatic environment, PAHs tend to accumulate in the sediment due to their high hydrophobicity, and thus sediments can be considered their ultimate sink. Concurrently, sediments comprise important habitats for benthic species. This raises concern over the toxic effects of PAHs to benthic communities. Despite PAHs have been the subject of several reviews, their toxicity to freshwater benthic species has not been comprehensively discussed. This review aimed to provide an overview on PAHs distribution in freshwater environments and on their toxicity to benthic fauna species. The distribution of PAHs between sediments and the overlying water column, given by the sediment-water partition coefficient, revealed that PAHs concentrations were 2 to 4 orders of magnitude higher in sediments than in water. The sediment-water partition coefficient was positively correlated to PAHs hydrophobicity. Toxicity of PAHs to benthic fauna was addressed through Species Sensitivity Distributions. The derived hazardous concentration for 5% of the species (HC5) decreased as follows: NAP (376 µg L-1) > PHE > PYR > FLT > ANT (0.854 µg L-1), varying by 3 orders of magnitude. The hazardous concentrations (HC5) to benthic species were inversely correlated to the hydrophobicity of the individual PAHs. These findings are pertinent for environmental risk assessment of these compounds. This review also identified future challenges regarding the environmental toxicity of PAHs to freshwater benthic communities, namely the need for updating the PAHs priority list and the importance of comprehensively and more realistically assess the toxicity of PAHs in combination with other stressors, both chemical and climate-related.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Água Doce , Sedimentos Geológicos/química , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa