Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Neurobiol ; 42: 33-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39432037

RESUMO

Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Neuroimagem , Humanos , Neuroimagem/métodos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica , Prognóstico
2.
J Neurotrauma ; 41(19-20): 2219-2237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38323539

RESUMO

Intimate partner violence (IPV) is a significant, global public health concern. Women, individuals with historically underrepresented identities, and disabilities are at high risk for IPV and tend to experience severe injuries. There has been growing concern about the risk of exposure to IPV-related head trauma, resulting in IPV-related brain injury (IPV-BI), and its health consequences. Past work suggests that a significant proportion of women exposed to IPV experience IPV-BI, likely representing a distinct phenotype compared with BI of other etiologies. An IPV-BI often co-occurs with psychological trauma and mental health complaints, leading to unique issues related to identifying, prognosticating, and managing IPV-BI outcomes. The goal of this review is to identify important gaps in research and clinical practice in IPV-BI and suggest potential solutions to address them. We summarize IPV research in five key priority areas: (1) unique considerations for IPV-BI study design; (2) understanding non-fatal strangulation as a form of BI; (3) identifying objective biomarkers of IPV-BI; (4) consideration of the chronicity, cumulative and late effects of IPV-BI; and (5) BI as a risk factor for IPV engagement. Our review concludes with a call to action to help investigators develop ecologically valid research studies addressing the identified clinical-research knowledge gaps and strategies to improve care in individuals exposed to IPV-BI. By reducing the current gaps and answering these calls to action, we will approach IPV-BI in a trauma-informed manner, ultimately improving outcomes and quality of life for those impacted by IPV-BI.


Assuntos
Violência por Parceiro Íntimo , Humanos , Violência por Parceiro Íntimo/psicologia , Lesões Encefálicas/psicologia , Feminino
3.
Photobiomodul Photomed Laser Surg ; 42(6): 404-413, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848287

RESUMO

Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.


Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Terapia com Luz de Baixa Intensidade/métodos , Idoso , Adolescente , Adulto Jovem , Aceleração , Concussão Encefálica/radioterapia , Estudo de Prova de Conceito , Tempo de Reação/efeitos da radiação , Força da Mão , Equilíbrio Postural/efeitos da radiação
4.
medRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865222

RESUMO

Neuroimaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) have been widely adopted in the clinical diagnosis and management of traumatic brain injury (TBI), particularly at the more acute and severe levels of injury. Additionally, a number of advanced applications of MRI have been employed in TBI-related clinical research with great promise, and researchers have used these techniques to better understand underlying mechanisms, progression of secondary injury and tissue perturbation over time, and relation of focal and diffuse injury to later outcome. However, the acquisition and analysis time, the cost of these and other imaging modalities, and the need for specialized expertise have represented historical barriers in extending these tools in clinical practice. While group studies are important in detecting patterns, heterogeneity among patient presentation and limited sample sizes from which to compare individual level data to well-developed normative data have also played a role in the limited translatability of imaging to wider clinical application. Fortunately, the field of TBI has benefitted from increased public and scientific awareness of the prevalence and impact of TBI, particularly in head injury related to recent military conflicts and sport-related concussion. This awareness parallels an increase in federal funding in the United States and other countries allocated to investigation in these areas. In this article we summarize funding and publication trends since the mainstream adoption of imaging in TBI to elucidate evolving trends and priorities in the application of different techniques and patient populations. We also review recent and ongoing efforts to advance the field through promoting reproducibility, data sharing, big data analytic methods, and team science. Finally, we discuss international collaborative efforts to combine and harmonize neuroimaging, cognitive, and clinical data, both prospectively and retrospectively. Each of these represent unique, but related, efforts that facilitate closing gaps between the use of advanced imaging solely as a research tool and the use of it in clinical diagnosis, prognosis, and treatment planning and monitoring.

5.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966838

RESUMO

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Adolescente , Humanos , Criança , Feminino , Masculino , Estudos de Coortes , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Atrofia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa