Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 37, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347231

RESUMO

There are several cellular and acellular structural barriers associated with the brain interfaces, which include the dura, the leptomeninges, the perivascular space and the choroid plexus epithelium. Each structure is enriched by distinct myeloid populations, which mainly originate from erythromyeloid precursors (EMP) in the embryonic yolk sac and seed the CNS during embryogenesis. However, depending on the precise microanatomical environment, resident myeloid cells differ in their marker profile, turnover and the extent to which they can be replenished by blood-derived cells. While some EMP-derived cells seed the parenchyma to become microglia, others engraft the meninges and become CNS-associated macrophages (CAMs), also referred to as border-associated macrophages (BAMs), e.g., leptomeningeal macrophages (MnMΦ). Recent data revealed that MnMΦ migrate into perivascular spaces postnatally where they differentiate into perivascular macrophages (PvMΦ). Under homeostatic conditions in pathogen-free mice, there is virtually no contribution of bone marrow-derived cells to MnMΦ and PvMΦ, but rather to macrophages of the choroid plexus and dura. In neuropathological conditions in which the blood-brain barrier is compromised, however, an influx of bone marrow-derived cells into the CNS can occur, potentially contributing to the pool of CNS myeloid cells. Simultaneously, resident CAMs may also proliferate and undergo transcriptional and proteomic changes, thereby, contributing to the disease outcome. Thus, both resident and infiltrating myeloid cells together act within their microenvironmental niche, but both populations play crucial roles in the overall disease course. Here, we summarize the current understanding of the sources and fates of resident CAMs in health and disease, and the role of the microenvironment in influencing their maintenance and function.


Assuntos
Macrófagos , Proteômica , Camundongos , Animais , Macrófagos/patologia , Sistema Nervoso Central/patologia , Microglia , Meninges
2.
J Cereb Blood Flow Metab ; 43(5): 680-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36655331

RESUMO

Brain ischemia is a common acute injury resulting from impaired blood flow to the brain. Translation of effective drug candidates from experimental models to patients has systematically failed. The use of human induced pluripotent stem cells (iPSC) offers new opportunities to gain translational insights into diseases including brain ischemia. We used a human 3D self-assembling iPSC-derived model (human cortical organoids, hCO) to characterize the effects of ischemia caused by oxygen-glucose deprivation (OGD). hCO exposed to 2 h or 8 h of OGD had neuronal death and impaired neuronal network complexity, measured in whole-mounting microtubule-associated protein 2 (MAP-2) immunostaining. Neuronal vulnerability was reflected by a reduction in MAP-2 mRNA levels, and increased release of neurofilament light chain (NfL) in culture media, proportional to OGD severity. Glial fibrillary acidic protein (GFAP) gene or protein levels did not change in hCO, but their release in medium increased after prolonged OGD. In conclusion, this human 3D iPSC-based in vitro model of brain ischemic injury is characterized by marked neuronal injury reflected by the release of the translational biomarker NfL which is relevant for testing neuroprotective strategies.


Assuntos
Isquemia Encefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isquemia Encefálica/metabolismo , Oxigênio/metabolismo , Morte Celular , Glucose/farmacologia , Organoides/metabolismo , Células Cultivadas
3.
J Vis Exp ; (164)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33191931

RESUMO

Synapses are the functional elements of neurons and their defects or losses are at the basis of several neurodegenerative and neurological disorders. Imaging studies are widely used to investigate their function and plasticity in physiological and pathological conditions. Because of their size and structure, localization studies of proteins require high-resolution imaging techniques. In this protocol, we describe a procedure to study in primary neurons the co-localization of target proteins with synaptic markers at a super-resolution level using structured illumination microscopy (SIM). SIM is a patterned-light illumination technique that doubles the spatial resolution of wide-field microscopy, reaching a detail of around 100 nm. The protocol indicates the required controls and settings for robust co-localization studies and an overview of the statistical methods to analyze the imaging data properly.


Assuntos
Microscopia/métodos , Neurônios/citologia , Neurônios/metabolismo , Razão Sinal-Ruído , Sinapses/metabolismo , Biomarcadores/metabolismo , Imageamento Tridimensional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa