Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Clin Sci (Lond) ; 135(2): 327-346, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33480422

RESUMO

A high salt intake exacerbates insulin resistance, evoking hypertension due to systemic perivascular inflammation, oxidative-nitrosative stress and endothelial dysfunction. Angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blockers (ARBs) have been shown to abolish inflammation and redox stress but only partially restore endothelial function in mesenteric vessels. We investigated whether sympatho-adrenal overactivation evokes coronary vascular dysfunction when a high salt intake is combined with insulin resistance in male Goto-Kakizaki (GK) and Wistar rats treated with two different classes of ß-blocker or vehicle, utilising synchrotron-based microangiography in vivo. Further, we examined if chronic carvedilol (CAR) treatment preserves nitric oxide (NO)-mediated coronary dilation more than metoprolol (MET). A high salt diet (6% NaCl w/w) exacerbated coronary microvessel endothelial dysfunction and NO-resistance in vehicle-treated GK rats while Wistar rats showed modest impairment. Microvascular dysfunction was associated with elevated expression of myocardial endothelin, inducible NO synthase (NOS) protein and 3-nitrotyrosine (3-NT). Both CAR and MET reduced basal coronary perfusion but restored microvessel endothelium-dependent and -independent dilation indicating a role for sympatho-adrenal overactivation in vehicle-treated rats. While MET treatment reduced myocardial nitrates, only MET treatment completely restored microvessel dilation to dobutamine (DOB) stimulation in the absence of NO and prostanoids (combined inhibition), indicating that MET restored the coronary flow reserve attributable to endothelium-derived hyperpolarisation (EDH). In conclusion, sympatho-adrenal overactivation caused by high salt intake and insulin resistance evoked coronary microvessel endothelial dysfunction and diminished NO sensitivity, which were restored by MET and CAR treatment in spite of ongoing inflammation and oxidative-nitrosative stress presumably caused by uninhibited renin-angiotensin-aldosterone system (RAAS) overactivation.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carvedilol/farmacologia , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Angiografia Coronária , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Metoprolol/farmacologia , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/administração & dosagem
2.
Cell Mol Life Sci ; 76(6): 1107-1134, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30523364

RESUMO

Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate (dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese individuals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary of research in the last 10-15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles in different diseases. It also highlights gaps in research that could be of future interest.


Assuntos
Doenças Cardiovasculares/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Esfingolipídeos/metabolismo , Animais , Apoptose , Autofagia , Doenças Cardiovasculares/patologia , Ceramidas/química , Diabetes Mellitus Tipo 2/patologia , Humanos , Estrutura Molecular , Obesidade/patologia , Esfingolipídeos/química
3.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669609

RESUMO

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Assuntos
Diástole , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Inflamação/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/fisiopatologia , Citoesqueleto de Actina/metabolismo , Animais , Conectina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Complexos Multienzimáticos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/metabolismo , Fosforilação , Ratos Wistar , Superóxidos/metabolismo , Vasodilatação/efeitos dos fármacos
4.
J Cell Mol Med ; 22(1): 628-645, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994186

RESUMO

To address the pathophysiological mechanisms underlying chronic kidney disease with comorbid cardiac dysfunction, we investigated renal and cardiac, functional and structural damage when myocardial infarction (MI) was applied in the setting of kidney injury (induced by 5/6 nephrectomy-STNx). STNx or Sham surgery was induced in male Sprague-Dawley rats with MI or Sham surgery performed 4 weeks later. Rats were maintained for a further 8 weeks. Rats (n = 36) were randomized into four groups: Sham+Sham, Sham+MI, STNx+Sham and STNx+MI. Increased renal tubulointerstitial fibrosis (P < 0.01) and kidney injury molecule-1 expression (P < 0.01) was observed in STNx+MI compared to STNx+Sham animals, while there were no further reductions in renal function. Heart weight was increased in STNx+MI compared to STNx+Sham or Sham+MI animals (P < 0.05), despite no difference in blood pressure. STNx+MI rats demonstrated greater cardiomyocyte cross-sectional area and increased cardiac interstitial fibrosis compared to either STNx+Sham (P < 0.01) or Sham+MI (P < 0.01) animals which was accompanied by an increase in diastolic dysfunction. These changes were associated with increases in ANP, cTGF and collagen I gene expression and phospho-p38 MAPK and phospho-p44/42 MAPK protein expression in the left ventricle. Addition of MI accelerated STNx-induced structural damage but failed to significantly exacerbate renal dysfunction. These findings highlight the bidirectional response in this model known to occur in cardiorenal syndrome (CRS) and provide a useful model for examining potential therapies for CRS.


Assuntos
Coração/fisiopatologia , Rim/patologia , Insuficiência Renal Crônica/fisiopatologia , Animais , Biomarcadores/metabolismo , Pressão Sanguínea , Cardiomegalia/complicações , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Comorbidade , Eletrocardiografia , Fibrose , Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Inflamação/complicações , Inflamação/patologia , Estimativa de Kaplan-Meier , Rim/fisiopatologia , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Tamanho do Órgão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Transdução de Sinais
5.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 55-63, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28316086

RESUMO

Cardiac fibrosis refers to an excessive deposition of extracellular matrix (ECM) in cardiac tissue. Fibrotic tissue is stiffer and less compliant, resulting in subsequent cardiac dysfunction and heart failure. Cardiac fibrosis in the ageing heart may involve activation of fibrogenic signalling and inhibition of anti-fibrotic signalling, leading to an imbalance of ECM turnover. Excessive accumulation of ECM such as collagen in older patients contributes to progressive ventricular dysfunction. Overexpression of collagen is derived from various sources, including higher levels of fibrogenic growth factors, proliferation of fibroblasts and cellular transdifferentiation. These may be triggered by factors, such as oxidative stress, inflammation, hypertension, cellular senescence and cell death, contributing to age-related fibrotic cardiac remodelling. In this review, we will discuss the fibrogenic contributors in age-related cardiac fibrosis, and the potential mechanisms by which fibrogenic processes can be interrupted for therapeutic intent.


Assuntos
Envelhecimento/patologia , Cardiomiopatias/patologia , Senescência Celular , Matriz Extracelular/patologia , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Remodelação Ventricular , Fatores Etários , Envelhecimento/metabolismo , Animais , Autofagia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Matriz Extracelular/metabolismo , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Transdução de Sinais
6.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R426-39, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252472

RESUMO

Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other. Male 12-wk-old Goto-Kakizaki (GK) and Wistar control rats were subjected to normoxia or chronic IH (90-s N2, 5% O2 at nadir, 90-s air, 20 cycles/h, 8 h/day) for 4 wk. Coronary endothelial function was assessed using microangiography with synchrotron radiation. Imaging was performed at baseline, during infusion of acetylcholine (ACh, 5 µg·kg(-1)·min(-1)) and then sodium nitroprusside (SNP, 5 µg·kg(-1)·min(-1)), after blockade of both nitric oxide (NO) synthase (NOS) with N(ω)-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg) and cyclooxygenase (COX, meclofenamate, 3 mg/kg), and during subsequent ACh. In GK rats, coronary vasodilatation in response to ACh and SNP was blunted compared with Wistar rats, and responses to ACh were abolished after blockade. In Wistar rats, IH blunted the ability of ACh or SNP to increase the number of visible vessels. In GK rats exposed to IH, neither ACh nor SNP were able to increase visible vessel number or caliber, and blockade resulted in marked vasoconstriction. Our findings indicate that IH augments the deleterious effects of insulin resistance on coronary endothelial function. They appear to increase the dependence of the coronary microcirculation on NO and/or vasodilator prostanoids, and greatly blunt the residual vasodilation in response to ACh after blockade of NOS/COX, presumably mediated by endothelium-derived hyperpolarizing factors.


Assuntos
Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/fisiopatologia , Hipóxia/complicações , Hipóxia/fisiopatologia , Resistência à Insulina , Microcirculação , Animais , Doença Crônica , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Progressão da Doença , Hipóxia/diagnóstico por imagem , Masculino , Ratos , Ratos Wistar
7.
Stem Cells ; 33(10): 3100-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26184084

RESUMO

Cardiac resident stem cells (CRSCs) hold much promise to treat heart disease but this remains a controversial field. Here, we describe a novel population of CRSCs, which are positive for W8B2 antigen and were obtained from adult human atrial appendages. W8B2(+) CRSCs exhibit a spindle-shaped morphology, are clonogenic and capable of self-renewal. W8B2(+) CRSCs show high expression of mesenchymal but not hematopoietic nor endothelial markers. W8B2(+) CRSCs expressed GATA4, HAND2, and TBX5, but not C-KIT, SCA-1, NKX2.5, PDGFRα, ISL1, or WT1. W8B2(+) CRSCs can differentiate into cardiovascular lineages and secrete a range of cytokines implicated in angiogenesis, chemotaxis, inflammation, extracellular matrix remodeling, cell growth, and survival. In vitro, conditioned medium collected from W8B2(+) CRSCs displayed prosurvival, proangiogenic, and promigratory effects on endothelial cells, superior to that of other adult stem cells tested, and additionally promoted survival and proliferation of neonatal rat cardiomyocytes. Intramyocardial transplantation of human W8B2(+) CRSCs into immunocompromised rats 1 week after myocardial infarction markedly improved cardiac function (∼40% improvement in ejection fraction) and reduced fibrotic scar tissue 4 weeks after infarction. Hearts treated with W8B2(+) CRSCs showed less adverse remodeling of the left ventricle, a greater number of proliferating cardiomyocytes (Ki67(+) cTnT(+) cells) in the remote region, higher myocardial vascular density, and greater infiltration of CD163(+) cells (a marker for M2 macrophages) into the border zone and scar regions. In summary, W8B2(+) CRSCs are distinct from currently known CRSCs found in human hearts, and as such may be an ideal cell source to repair myocardial damage after infarction.


Assuntos
Antígenos de Superfície/biossíntese , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Adulto , Células-Tronco Adultas/transplante , Animais , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Meios de Cultivo Condicionados/farmacologia , Citocinas/biossíntese , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Ratos
8.
FASEB J ; 29(2): 540-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25395452

RESUMO

Chronic kidney disease (CKD) results from the development of fibrosis, ultimately leading to end-stage renal disease (ESRD). Although human bone marrow-derived mesenchymal stem cells (MSCs) can accelerate renal repair following acute injury, the establishment of fibrosis during CKD may affect their potential to influence regeneration capacity. Here we tested the novel combination of MSCs with the antifibrotic serelaxin to repair and protect the kidney 7 d post-unilateral ureteral obstruction (UUO), when fibrosis is established. Male C57BL6 mice were sham-operated or UUO-inured (n = 4-6) and received vehicle, MSCs (1 × 10(6)), serelaxin (0.5 mg/kg per d), or the combination of both. In vivo tracing studies with luciferin/enhanced green fluorescent protein (eGFP)-tagged MSCs showed specific localization in the obstructed kidney where they remained for 36 h. Combination therapy conferred significant protection from UUO-induced fibrosis, as indicated by hydroxyproline analysis (P < 0.001 vs. vehicle, P < 0.05 vs. MSC or serelaxin alone). This was accompanied by preserved structural architecture, decreased tubular epithelial injury (P < 0.01 vs. MSCs alone), macrophage infiltration, and myofibroblast localization in the kidney (both P < 0.01 vs. vehicle). Combination therapy also stimulated matrix metalloproteinase (MMP)-2 activity over either treatment alone (P < 0.05 vs. either treatment alone). These results suggest that the presence of an antifibrotic in conjunction with MSCs ameliorates established kidney fibrosis and augments tissue repair to a greater extent than either treatment alone.


Assuntos
Fibrose/fisiopatologia , Falência Renal Crônica/fisiopatologia , Rim/fisiopatologia , Células-Tronco Mesenquimais/citologia , Relaxina/uso terapêutico , Insuficiência Renal Crônica/terapia , Animais , Diferenciação Celular , Proliferação de Células , Colágeno/metabolismo , Gelatinases/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/lesões , Rim/metabolismo , Macrófagos/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Proteínas Recombinantes/uso terapêutico , Regeneração , Fator de Crescimento Transformador beta/metabolismo
9.
Clin Exp Pharmacol Physiol ; 43(10): 896-905, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385644

RESUMO

We determined whether adenine-induced chronic kidney disease (CKD) in rats is associated with renal tissue hypoxia. Adenine (100 mg) or its vehicle was administered to male Sprague-Dawley rats, daily by oral gavage, over a 15-day period. Renal function was assessed before, and 7 and 14 days after, adenine treatment commenced, by collection of a 24-hour urine sample and a blood sample from the tail vein. On day 15, arterial pressure was measured in conscious rats via the tail artery. Renal tissue hypoxia was then assessed by pimonidazole adduct immunohistochemistry and fibrosis was assessed by staining tissue with picrosirius red and Masson's trichrome. CKD was evident within 7 days of commencing adenine treatment, as demonstrated by increased urinary albumin to creatinine ratio (30 ± 12-fold). By day 14 of adenine treatment plasma creatinine concentration was more than 7-fold greater, and plasma urea more than 5-fold greater, than their baseline levels. On day 15, adenine-treated rats had slightly elevated mean arterial pressure (8 mmHg), anaemia and renomegaly. Kidneys of adenine-treated rats were characterised by the presence of tubular casts, dilated tubules, expansion of the interstitial space, accumulation of collagen, and tubulointerstitial hypoxia. Pimonidazole staining (hypoxia) co-localised with fibrosis and was present in both patent and occluded tubules. We conclude that renal tissue hypoxia develops rapidly in adenine-induced CKD. This model, therefore, should prove useful for examination of the temporal and spatial relationships between tubulointerstitial hypoxia and the development of CKD, and thus the testing of the 'chronic hypoxia hypothesis'.


Assuntos
Adenina/toxicidade , Rim/metabolismo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/induzido quimicamente
10.
Am J Physiol Renal Physiol ; 308(7): F784-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25587118

RESUMO

ClC-5 is a chloride/proton exchanger that plays an obligate role in albumin uptake by the renal proximal tubule. ClC-5 forms an endocytic complex with the albumin receptor megalin/cubilin. We have identified a novel ClC-5 binding partner, cytosolic aspartyl aminopeptidase (DNPEP; EC 3.4.11.21), that catalyzes the release of N-terminal aspartate/glutamate residues. The physiological role of DNPEP remains largely unresolved. Mass spectrometric analysis of proteins binding to the glutathione-S-transferase (GST)-ClC-5 C terminus identified DNPEP as an interacting partner. Coimmunoprecipitation confirmed that DNPEP and ClC-5 also associated in cells. Further experiments using purified GST-ClC-5 and His-DNPEP proteins demonstrated that the two proteins bound directly to each other. In opossum kidney (OK) cells, confocal immunofluorescence studies revealed that DNPEP colocalized with albumin-containing endocytic vesicles. Overexpression of wild-type DNPEP increased cell-surface levels of ClC-5 and albumin uptake. Analysis of DNPEP-immunoprecipitated products from rat kidney lysate identified ß-actin and tubulin, suggesting a role for DNPEP in cytoskeletal maintenance. A DNase I inhibition assay showed a significant decrease in the amount of G actin when DNPEP was overexpressed in OK cells, suggesting a role for DNPEP in stabilizing the cytoskeleton. DNPEP was not present in the urine of healthy rats; however, it was readily detected in the urine in rat models of mild and heavy proteinuria (diabetic nephropathy and anti-glomerular basement membrane disease, respectively). Urinary levels of DNPEP were found to correlate with the severity of proteinuria. Therefore, we have identified another key molecular component of the albumin endocytic machinery in the renal proximal tubule and describe a new role for DNPEP in stabilizing the actin cytoskeleton.


Assuntos
Albuminas/metabolismo , Canais de Cloreto/metabolismo , Endocitose/fisiologia , Glutamil Aminopeptidase/metabolismo , Túbulos Renais Proximais/metabolismo , Actinas/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Rim/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Ratos
11.
Cardiovasc Diabetol ; 14: 92, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194354

RESUMO

BACKGROUND: Impaired actin-myosin cross-bridge (CB) dynamics correlate with impaired left ventricular (LV) function in early diabetic cardiomyopathy (DCM). Elevated expression and activity of Rho kinase (ROCK) contributes to the development of DCM. ROCK targets several sarcomeric proteins including myosin light chain 2, myosin binding protein-C (MyBP-C), troponin I (TnI) and troponin T that all have important roles in regulating CB dynamics and contractility of the myocardium. Our aim was to examine if chronic ROCK inhibition prevents impaired CB dynamics and LV dysfunction in a rat model of early diabetes, and whether these changes are associated with changes in myofilament phosphorylation state. METHODS: Seven days post-diabetes induction (65 mg/kg ip, streptozotocin), diabetic rats received the ROCK inhibitor, fasudil (10 mg/kg/day ip) or vehicle for 14 days. Rats underwent cardiac catheterization to assess LV function simultaneous with X-ray diffraction using synchrotron radiation to assess in situ CB dynamics. RESULTS: Compared to controls, diabetic rats developed mild systolic and diastolic dysfunction, which was attenuated by fasudil. End-diastolic and systolic myosin proximity to actin filaments were significantly reduced in diabetic rats (P < 0.05). In all rats there was an inverse correlation between ROCK1 expression and the extension of myosin CB in diastole, with the lowest ROCK expression in control and fasudil-treated diabetic rats. In diabetic and fasudil-treated diabetic rats changes in relative phosphorylation of TnI and MyBP-C were not significant from controls. CONCLUSIONS: Our results demonstrate a clear role for ROCK in the development of LV dysfunction and impaired CB dynamics in early DCM.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Miosinas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Actinas/metabolismo , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Masculino , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Quinases Associadas a rho/metabolismo
12.
Clin Exp Pharmacol Physiol ; 42(3): 256-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25545857

RESUMO

Hyperglycaemia increases the risk of developing diabetic nephropathy, with primary targets in the glomerulus and proximal tubule. Importantly, glomerular damage in the kidney leads to elevated albumin levels in the filtrate, which contributes to tubular structural modifications that lead to dysfunction. Diabetes alters the endocannabinoid system in a number of target organs, with previous research characterizing tissue-specific changes in the expression of the cannabinoid receptor 1 (CB1 ) and G protein-coupled receptor 55 (GPR55), a putative cannabinoid receptor, in diabetes. Although these receptors have a functional role in the cannabinoid system in the kidney, there has been little investigation into changes in the expression of CB1 and GPR55 in the proximal tubule under diabetic conditions. In this study, CB1 and GPR55 messenger RNA and protein levels were quantified in cultured human kidney cells and then treated with either elevated glucose, elevated albumin, or a combination of glucose and albumin for 4, 6, 18, or 24 h. In addition, CB1 and GPR55 protein expression was characterized in whole-kidney lysate from streptozotocin-induced diabetic Sprague-Dawley rats. In vitro exposure to elevated glucose and albumin increased CB1 and GPR55 messenger RNA and protein expression in proximal tubule cells in a time-dependant manner. In whole kidney of streptozotocin-induced diabetic rats, CB1 protein was upregulated, whereas GPR55 protein concentration was not altered. Thus, expression of CB1 and GPR55 in proximal tubules is altered in response to elevated levels of glucose and albumin. Further investigations should determine if these receptors are effective physiological targets for the treatment and prevention of diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/genética , Regulação da Expressão Gênica , Túbulos Renais Proximais/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides
13.
Cardiovasc Diabetol ; 13: 89, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24886336

RESUMO

BACKGROUND: Despite advances in the treatment of heart failure, mortality remains high, particularly in individuals with diabetes. Activated transforming growth factor beta (TGF-ß) contributes to the pathogenesis of the fibrotic interstitium observed in diabetic cardiomyopathy. We hypothesized that high glucose enhances the activity of the transcriptional co-activator p300, leading to the activation of TGF-ß via acetylation of Smad2; and that by inhibiting p300, TGF-ß activity will be reduced and heart failure prevented in a clinically relevant animal model of diabetic cardiomyopathy. METHODS: p300 activity was assessed in H9c2 cardiomyoblasts under normal glucose (5.6 mmol/L-NG) and high glucose (25 mmol/L-HG) conditions. 3H-proline incorporation in cardiac fibroblasts was also assessed as a marker of collagen synthesis. The role of p300 activity in modifying TGF-ß activity was investigated with a known p300 inhibitor, curcumin or p300 siRNA in vitro, and the functional effects of p300 inhibition were assessed using curcumin in a hemodynamically validated model of diabetic cardiomyopathy - the diabetic TG m(Ren-2)27 rat. RESULTS: In vitro, H9c2 cells exposed to HG demonstrated increased p300 activity, Smad2 acetylation and increased TGF-ß activity as assessed by Smad7 induction (all p < 0.05 c/w NG). Furthermore, HG induced 3H-proline incorporation as a marker of collagen synthesis (p < 0.05 c/w NG). p300 inhibition, using either siRNA or curcumin reduced p300 activity, Smad acetylation and TGF-ß activity (all p < 0.05 c/w vehicle or scrambled siRNA). Furthermore, curcumin therapy reduced 3H-proline incorporation in HG and TGF-ß stimulated fibroblasts (p < 0.05 c/w NG). To determine the functional significance of p300 inhibition, diabetic Ren-2 rats were randomized to receive curcumin or vehicle for 6 weeks. Curcumin treatment reduced cardiac hypertrophy, improved diastolic function and reduced extracellular matrix production, without affecting glycemic control, along with a reduction in TGF-ß activity as assessed by Smad7 activation (all p < 0.05 c/w vehicle treated diabetic animals). CONCLUSIONS: These findings suggest that high glucose increases the activity of the transcriptional co-regulator p300, which increases TGF-ß activity via Smad2 acetylation. Modulation of p300 may be a novel strategy to treat diabetes induced heart failure.


Assuntos
Cardiomegalia/metabolismo , Proteína p300 Associada a E1A/metabolismo , Glucose/toxicidade , Proteína Smad2/metabolismo , Transcrição Gênica/fisiologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Linhagem Celular , Fibrose , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Distribuição Aleatória , Ratos , Ratos Transgênicos , Transcrição Gênica/efeitos dos fármacos
14.
Circ Res ; 111(11): 1470-83, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23139286

RESUMO

Cardiorenal syndrome is a condition in which a complex interrelationship between cardiac dysfunction and renal dysfunction exists. Despite advances in treatment of both cardiovascular and kidney disease, cardiorenal syndrome remains a major global health problem. Characteristic of the pathophysiology of cardiorenal syndrome is bidirectional cross-talk; mediators/substances activated by the disease state of 1 organ can play a role in worsening dysfunction of the other by exerting their biologically harmful effects, leading to the progression of the syndrome. Accumulation of uremic toxins is a hallmark of renal excretory dysfunction. Removal of some toxins by conventional dialysis is particularly problematic because of their high protein binding. In this review, we demonstrate that protein-bound uremic toxins may play an important role in progression of cardiovascular disease in the setting of chronic kidney disease. The highly protein-bound uremic toxin indoxyl sulfate has emerged as a potent toxin adversely affecting both the kidney and heart. Direct cardiac effects of this toxin have been recently demonstrated both in vitro and in vivo. Specifically, potent fibrogenic and prohypertrophic effects, as well as oxidative stress-inducing effects, appear to play a central role in both renal and cardiac pathology. Many of these adverse effects can be suppressed by use of a gut adsorbent, AST-120. Potential mechanisms underlying indoxyl sulfate-induced cardiorenal fibrosis are discussed. Future research and clinical implications conclude this review.


Assuntos
Síndrome Cardiorrenal/metabolismo , Proteinúria/metabolismo , Toxinas Biológicas/metabolismo , Uremia/metabolismo , Carbono/uso terapêutico , Síndrome Cardiorrenal/prevenção & controle , Síndrome Cardiorrenal/urina , Humanos , Indicã/metabolismo , Indicã/urina , Estresse Oxidativo/efeitos dos fármacos , Óxidos/uso terapêutico , Ligação Proteica , Proteinúria/urina , Toxinas Biológicas/urina , Uremia/urina
15.
Antioxidants (Basel) ; 13(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397785

RESUMO

Associations between chronic diabetes complications and mitochondrial dysfunction represent a subject of major importance, given the diabetes pandemic and high personal and socioeconomic costs of diabetes and its complications. Modelling diabetes complications in inbred laboratory animals is challenging due to incomplete recapitulation of human features, but offer mechanistic insights and preclinical testing. As mitochondrial-based oxidative stress is implicated in human diabetic complications, herein we evaluate diabetes in a unique mouse model that harbors a mitochondrial DNA from a divergent mouse species (the 'xenomitochondrial mouse'), which has mild mitochondrial dysfunction and increased oxidative stress. We use the streptozotocin-induced diabetes model with insulin supplementation, with 20-weeks diabetes. We compare C57BL/6 mice and the 'xenomitochondrial' mouse, with measures of heart and kidney function, histology, and skin oxidative stress markers. Compared to C57BL/6 mice, the xenomitochondrial mouse has increased diabetic heart and kidney damage, with cardiac dysfunction, and increased cardiac and renal fibrosis. Our results show that mitochondrial oxidative stress consequent to divergent mtDNA can worsen diabetes complications. This has implications for novel therapeutics to counter diabetes complications, and for genetic studies of risk, as mtDNA genotypes may contribute to clinical outcomes.

16.
Biophys J ; 104(5): 1065-72, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23473489

RESUMO

Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I(1,0)/I(1,1)). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy.


Assuntos
Citoesqueleto de Actina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Contração Miocárdica , Miosinas/metabolismo , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Espalhamento a Baixo Ângulo , Pressão Ventricular , Difração de Raios X
17.
Cell Physiol Biochem ; 32(5): 1309-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24280624

RESUMO

BACKGROUND: The cannabinoid receptor type 2 (CB2) is reduced in podocytes of animals and humans with Type 2 Diabetes Mellitus (T2DM), with activation of CB2 ameliorating albuminuria in animals. As albuminuria also is due to proximal tubule dysfunction, the aim of this study is to investigate tubular expression of CB2 under diabetic conditions in addition to the cell signaling pathways that underlie these changes. METHODS: We characterized total CB2 protein in diabetic animals and in Human Kidney 2 (HK2) cells exposed to elevated albumin and glucose, the levels of CB2 mRNA and protein. We also used latrunculin to determine if internalization of albumin was required to regulate CB2 levels. Finally, we characterized the levels of active and total AKT, ERK1/2 and p38 in response to albumin. RESULTS: There were no changes to CB2 expression in kidney lysate from diabetic rats. In HK2 cells, expression of CB2 was unaltered following exposure to high glucose. High albumin treatment alone and in combination with high glucose, resulted in a significant reduction in CB2 receptor mRNA expression at 6 and 18 hours. CB2 protein expression was reduced at 6 and 24 hours, in high albumin and in combination with high glucose. Internalization of albumin was required to regulate CB2 levels, and inhibition of ERK1/2, did not rescue the loss of CB2 in response to albumin. CONCLUSION: We have demonstrated that internalization of albumin is required to reduce CB2 mRNA and protein expression in proximal tubules in vitro. Consequently, altered expression of CB2 in both the podocytes and tubules may contribute to the albuminuria observed in T2DM.


Assuntos
Albuminas/metabolismo , Túbulos Renais Proximais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor CB2 de Canabinoide/metabolismo , Albuminas/farmacocinética , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/genética , Transdução de Sinais/efeitos dos fármacos
18.
Curr Opin Nephrol Hypertens ; 22(1): 107-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23197158

RESUMO

PURPOSE OF REVIEW: Urotensin II (UTS2), the most potent vasoconstrictor identified thus far, is an undecapeptide hormone with a structure that is highly conserved through mammalian phylogeny. In spite of its broad expression across the invertebrate and vertebrate world, the precise role of UTS2 in physiology and disease is still unknown. The first description of human UTS2 and its receptor brought initial promise of a potential therapeutic target for progressive renal disease, with vasoconstrictive and profibrotic actions within an autocrine and paracrine system and local renal generation that was upregulated with renal pathology. RECENT FINDINGS: However, the last decade has not brought the successful development of new treatments first hoped for, with one small human clinical trial bearing negative results. What has become apparent is that the spectrum of actions of UTS2 is broad and often paradoxical. This ancient hormone has both vasoconstrictor and vasodilatory actions, has both profibrotic and antiapoptotic activity, as well as actions which are highly contextual on the particular vascular bed studied and on the presence or absence of superimposed disease state. SUMMARY: With current development of newer UTS2 antagonists attempting to more closely replicate the ligand-receptor kinetics of UTS2 and its receptor, the focus on potential clinical applications of UTS2 inhibition has moved away from the kidney to the treatment of chronic lung and cardiovascular diseases.


Assuntos
Insuficiência Renal Crônica/metabolismo , Urotensinas/antagonistas & inibidores , Urotensinas/metabolismo , Animais , Fibrose/metabolismo , Humanos , Mitógenos/metabolismo , Vasoconstrição , Vasodilatação
19.
Cardiovasc Diabetol ; 12: 111, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24059472

RESUMO

OBJECTIVES: Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes. METHODS: Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6). Changes in vessel number and calibre during vasodilator stimulation before and after blockade of nitric oxide synthase and cyclooxygenase were compared between rats. Acute responses to ROCK inhibitor, fasudil (10 mg/kg iv) was evaluated. Further, perivascular and myocardial fibrosis, arterial intimal thickening were assessed by histology, and capillary density, nitrotyrosine and ROCK1/2 expressions were evaluated by immunohistochemical staining. RESULTS: Diabetic rats had significantly elevated plasma glucose (P < 0.001 vs control), but did not differ in fibrotic scores, media to lumen ratio, capillary density or baseline visible vessel number or calibre. Responses to acetylcholine and sodium nitroprusside stimulation were similar between groups. However, in comparison to control rats the diabetic rats showed more segmental constrictions during blockade, which were not completely alleviated by acetylcholine, but were alleviated by fasudil. Further, second order vessel branches in diabetic rats were significantly more dilated relative to baseline (37% vs 12% increase, P < 0.05) after fasudil treatment compared to control rats, while visible vessel number increased in both groups. ROCK2 expression was borderline greater in diabetic rat hearts (P < 0.053). CONCLUSIONS: We found that ahead of the reported decline in coronary endothelial vasodilator function in diabetic rats there was moderate elevation in ROCK expression, more widespread segmental constriction when nitric oxide and prostacyclin production were inhibited and notably, increased calibre in second and third order small arteries-arterioles following ROCK inhibition. Based on nitrotyrosine staining oxidative stress was not significantly elevated in early diabetic rats. We conclude that tonic ROCK mediated vasoconstriction contributes to coronary vasomotor tone in early diabetes.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Angiopatias Diabéticas/tratamento farmacológico , Microcirculação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Vasodilatadores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Inibidores de Ciclo-Oxigenase/farmacologia , Angiopatias Diabéticas/diagnóstico por imagem , Angiopatias Diabéticas/enzimologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/fisiopatologia , Epoprostenol/metabolismo , Fibrose , Masculino , Miocárdio/enzimologia , Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 32(2): 370-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22075246

RESUMO

OBJECTIVE: In diabetes, long-term micro- and macrovascular damage often underlies the functional decline in the cardiovascular system. However, it remains unclear whether early-stage diabetes is associated with in vivo functional impairment in the coronary microvasculature. Synchrotron imaging allows us to detect and quantify regional differences in resistance microvessel caliber in vivo, even under conditions of high heart rate. METHODS AND RESULTS: Synchrotron cine-angiograms of the coronary vasculature were recorded using anesthetized Sprague-Dawley rats 3 weeks after treatment with vehicle or streptozotocin (diabetic). In the early diabetic state, in the presence of nitric oxide and prostacyclin, vessel diameters were smaller (P<0.01) and endothelium-dependent vessel recruitment was already depressed (P<0.05). Endothelium-dependent and -independent vasodilatory responses in individual coronary vessels were not different in vivo. Inhibition of NO and PGI(2) production in diabetes uncovered early localized impairment in dilation. Diabetic animals displayed focal stenoses and segmental constrictions during nitric oxide synthase/cyclooxygenase blockade, which persisted during acetylcholine infusion (P<0.05), and a strong trend toward loss of visible microvessels. CONCLUSIONS: Synchrotron imaging provides a novel method to investigate coronary microvascular function in vivo at all levels of the arterial tree. Furthermore, we have shown that early-stage diabetes is associated with localized coronary microvascular endothelial dysfunction.


Assuntos
Angiografia Coronária/métodos , Doença das Coronárias/diagnóstico por imagem , Vasos Coronários/patologia , Diabetes Mellitus Experimental/patologia , Microcirculação , Síncrotrons , Animais , Doença das Coronárias/etiologia , Doença das Coronárias/patologia , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Epoprostenol/metabolismo , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/efeitos adversos , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa