Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Anal Biochem ; 657: 114885, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113550

RESUMO

Mammalian transglutaminase 2 exhibits poor long-term stability in solution. Reconstituting lyophilized transglutaminase 2 in solutions containing dithiothreitol and EDTA alone and together with glycerol stabilizes the activity of this enzyme for several weeks.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Animais , Ditiotreitol , Ácido Edético , Glicerol , Cobaias , Fígado , Mamíferos
2.
Curr Cardiol Rep ; 24(3): 247-260, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35028820

RESUMO

PURPOSE OF REVIEW: Successful treatment of cancer can be hampered by the attendant risk of cardiotoxicity, manifesting as cardiomyopathy, left ventricle systolic dysfunction and, in some cases, heart failure. This risk can be mitigated if the injury to the heart is detected before the onset to irreversible cardiac impairment. The gold standard for cardiac imaging in cardio-oncology is echocardiography. Despite improvements in the application of this modality, it is not typically sensitive to sub-clinical or early-stage dysfunction. We identify in this review some emerging tracers for detecting incipient cardiotoxicity by positron emission tomography (PET). RECENT FINDINGS: Vectors labeled with positron-emitting radionuclides (e.g., carbon-11, fluorine-18, gallium-68) are now available to study cardiac function, metabolism, and tissue repair in preclinical models. Many of these probes are highly sensitive to early damage, thereby potentially addressing the limitations of current imaging approaches, and show promise in preliminary clinical evaluations. The overlapping pathophysiology between cardiotoxicity and heart failure significantly expands the number of imaging tools available to cardio-oncology. This is highlighted by the emergence of radiolabeled probes targeting fibroblast activation protein (FAP) for sensitive detection of dysregulated healing process that underpins adverse cardiac remodeling. The growth of PET scanner technology also creates an opportunity for a renaissance in metabolic imaging in cardio-oncology research.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Cardiotoxicidade/diagnóstico por imagem , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Coração/diagnóstico por imagem , Humanos , Oncologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons
3.
Molecules ; 27(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268652

RESUMO

Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.


Assuntos
Ácido Graxo Sintases
4.
Mol Pharm ; 17(6): 1954-1962, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286841

RESUMO

The application of small molecules targeting prostate-specific membrane antigen (PSMA) has emerged as a highly promising clinical strategy for visualization and treatment of prostate cancer. Ligands that integrate the ability to both quantify the distribution of radioactivity and treat disease through the use of a matched pair of radionuclides have particular value in clinical and regulatory settings. In this study, we describe the development and preclinical evaluation of RPS-085, a ligand that binds PSMA and serum albumin and exploits the 64/67Cu radionuclide pair for prostate cancer theranostics. RPS-085 was synthesized by conjugation of a PSMA-targeting moiety, an Nε-(2-(4-iodophenyl)acetyl)lysine albumin binding group, and a bifunctionalized MeCOSar chelator. The IC50 of the metal-free RPS-085 was determined in a competitive binding assay. The affinity for human serum albumin of the radiolabeled compound was determined by high-performance affinity chromatography. Radiolabeling was performed in NH4OAc buffer at 25 °C. The stability of the radiolabeled compounds was assessed in vitro and in vivo. The biodistribution of [64/67Cu]Cu-RPS-085 was determined following intravenous administration to male BALB/c mice bearing LNCaP tumor xenografts. The radiochemical yields of [64/67Cu]Cu-RPS-085 were nearly quantitative after 20 min. The metal-free complex is a potent inhibitor of PSMA (IC50 = 29 ± 2 nM), and the radiolabeled compound has moderate affinity for human serum albumin (Kd = 9.9 ± 1.7 µM). Accumulation of the tracer in mice was primarily evident in tumor and kidneys. Activity in all other tissues, including blood, was negligible, and the radiolabeled compounds demonstrated high stability in vitro and in vivo. Tumor activity reached a maximum at 4 h post injection (p.i.) and cleared gradually over a period of 96 h. By contrast, activity in the kidney cleared rapidly from 4 to 24 h p.i. As a consequence, by 24 h p.i., the tumor-to-kidney ratio exceeds 2, and the predicted dose to tumors is significantly greater than the dose to kidneys. [64Cu]Cu-RPS-085 combines rapid tissue distribution and clearance with prolonged retention in LNCaP tumor xenografts. The pharmacokinetics should enable radioligand therapy using [67Cu]Cu-RPS-085. By virtue of its rapid kidney clearance, the therapeutic index of [67Cu]Cu-RPS-085 likely compares favorably to its parent structure, [177Lu]Lu-RPS-063, a highly avid PSMA-targeting compound. On this basis, [64/67Cu]Cu-RPS-085 show great promise as PSMA-targeting theranostic ligands for prostate cancer imaging and therapy.


Assuntos
Radioisótopos de Cobre/química , Cobre/química , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Animais , Linhagem Celular , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medicina de Precisão/métodos , Neoplasias da Próstata/metabolismo
5.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022852

RESUMO

Determining chemokine receptor CXCR4 expression is significant in multiple diseases due to its role in promoting inflammation, cell migration and tumorigenesis. [68Ga]Pentixafor is a promising ligand for imaging CXCR4 expression in multiple tumor types, but its utility is limited by the physical properties of 68Ga. We screened a library of >200 fluorine-containing structural derivatives of AMD-3465 to identify promising candidates for in vivo imaging of CXCR4 expression by positron emission tomography (PET). Compounds containing fluoroethyltriazoles consistently achieved higher docking scores. Six of these higher scoring compounds were radiolabeled by click chemistry and evaluated in PC3-CXCR4 cells and BALB/c mice bearing bilateral PC3-WT and PC3-CXCR4 xenograft tumors. The apparent CXCR4 affinity of the ligands was relatively low, but tumor uptake was CXCR4-specific. The tumor uptake of [18F]RPS-534 (7.2 ± 0.3 %ID/g) and [18F]RPS-547 (3.1 ± 0.5 %ID/g) at 1 h p.i. was highest, leading to high tumor-to-blood, tumor-to-muscle, and tumor-to-lung ratios. Total cell-associated activity better predicted in vivo tumor uptake than did the docking score or apparent CXCR4 affinity. By this metric, and on the basis of their high yielding radiosynthesis, high tumor uptake, and good contrast to background, [18F]RPS-547, and especially [18F]RPS-534, are promising 18F-labeled candidates for imaging CXCR4 expression.


Assuntos
Complexos de Coordenação/administração & dosagem , Imagem Molecular , Peptídeos Cíclicos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Receptores CXCR4/genética , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/química , Radioisótopos de Flúor/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Camundongos , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores CXCR4/química , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Molecules ; 23(10)2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304795

RESUMO

Emerging interest in extending the plasma half-life of small molecule radioligands warrants a consideration of the appropriate radionuclide for PET imaging at longer time points (>8 h). Among candidate positron-emitting radionuclides, 66Ga (t1/2 = 9.5 h, ß+ = 57%) has suitable nuclear and chemical properties for the labeling and PET imaging of radioligands of this profile. We investigated the value of 66Ga to preclinical screening and the evaluation of albumin-binding PSMA-targeting small molecules. 66Ga was produced by irradiation of a natZn target. 66Ga3+ ions were separated from Zn2+ ions by an optimized UTEVA anion exchange column that retained 99.99987% of Zn2+ ions and allowed 90.2 ± 2.8% recovery of 66Ga3+. Three ligands were radiolabeled in 46.4 ± 20.5%; radiochemical yield and >90% radiochemical purity. Molar activity was 632 ± 380 MBq/µmol. Uptake in the tumor and kidneys at 1, 3, 6, and 24 h p.i. was determined by µPET/CT imaging and more completely predicted the distribution kinetics than uptake of the [68Ga]Ga-labeled ligands did. Although there are multiple challenges to the use of 66Ga for clinical PET imaging, it can be a valuable research tool for ligand screening and preclinical imaging beyond 24 h.


Assuntos
Radioisótopos de Gálio , Compostos Radiofarmacêuticos , Animais , Desenho de Fármacos , Radioisótopos de Gálio/química , Radioisótopos de Gálio/isolamento & purificação , Humanos , Ligantes , Metais/química , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/isolamento & purificação , Soluções , Microtomografia por Raio-X
7.
Angew Chem Int Ed Engl ; 56(46): 14712-14717, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28963750

RESUMO

The 18-membered macrocycle H2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [225 Ac(macropa)]+ remained intact over 7 to 8 days when challenged with either excess La3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases.


Assuntos
Actínio/química , Actínio/uso terapêutico , Partículas alfa , Compostos Macrocíclicos/química , Animais , Xenoenxertos , Humanos , Ligantes , Camundongos , Trastuzumab/química
8.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39204136

RESUMO

Cancer is one of the most complex and challenging human diseases, with rising incidences and cancer-related deaths despite improved diagnosis and personalized treatment options. Targeted alpha therapy (TαT) offers an exciting strategy emerging for cancer treatment which has proven effective even in patients with advanced metastatic disease that has become resistant to other treatments. Yet, in many cases, more sophisticated strategies are needed to stall disease progression and overcome resistance to TαT. The combination of two or more therapies which have historically been used as stand-alone treatments is an approach that has been pursued in recent years. This review aims to provide an overview on TαT and the four main pillars of therapeutic strategies in cancer management, namely external beam radiation therapy (EBRT), immunotherapy with checkpoint inhibitors (ICI), cytostatic chemotherapy (CCT), and brachytherapy (BT), and to discuss their potential use in combination with TαT. A brief description of each therapy is followed by a review of known biological aspects and state-of-the-art treatment practices. The emphasis, however, is given to the motivation for combination with TαT as well as the pre-clinical and clinical studies conducted to date.

9.
Geroscience ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37217633

RESUMO

Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine ß-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine ß-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by ß-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine ß-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed ß-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed ß-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed ß-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for ß-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.

10.
Cancer Lett ; 570: 216329, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499741

RESUMO

Radiation therapy (RT) is essential for the management of glioblastoma (GBM). However, GBM frequently relapses within the irradiated margins, thus suggesting that RT might stimulate mechanisms of resistance that limits its efficacy. GBM is recognized for its metabolic plasticity, but whether RT-induced resistance relies on metabolic adaptation remains unclear. Here, we show in vitro and in vivo that irradiated GBM tumors switch their metabolic program to accumulate lipids, especially unsaturated fatty acids. This resulted in an increased formation of lipid droplets to prevent endoplasmic reticulum (ER) stress. The reduction of lipid accumulation with genetic suppression and pharmacological inhibition of the fatty acid synthase (FASN), one of the main lipogenic enzymes, leads to mitochondrial dysfunction and increased apoptosis of irradiated GBM cells. Combination of FASN inhibition with focal RT improved the median survival of GBM-bearing mice. Supporting the translational value of these findings, retrospective analysis of the GLASS consortium dataset of matched GBM patients revealed an enrichment in lipid metabolism signature in recurrent GBM compared to primary. Overall, these results demonstrate that RT drives GBM resistance by generating a lipogenic environment permissive to GBM survival. Targeting lipid metabolism might be required to develop more effective anti-GBM strategies.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Estudos Retrospectivos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Ácidos Graxos Insaturados/uso terapêutico , Ácidos Graxos/metabolismo
11.
Hum Gene Ther ; 34(21-22): 1095-1106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37624734

RESUMO

Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.


Assuntos
Dependovirus , Doenças do Sistema Nervoso , Animais , Dependovirus/genética , Radioisótopos do Iodo , Capsídeo , Distribuição Tecidual , Transdução Genética , Terapia Genética/métodos , Tomografia por Emissão de Pósitrons , Vetores Genéticos/genética , Técnicas de Transferência de Genes
12.
Transl Oncol ; 22: 101450, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35597190

RESUMO

The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.

13.
Mol Imaging Biol ; 23(5): 686-696, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33721173

RESUMO

PURPOSE: Fibroblast activation protein-α (FAPα) is uniquely expressed in activated fibroblasts, including cancer-associated fibroblasts that populate tumor stroma and contribute to proliferation and immunosuppression. Radiolabeled FAPα inhibitors enable imaging of multiple human cancers, but time-dependent clearance from tumors currently limits their utility as FAPα-targeted radiotherapeutics. We sought to increase the area under the curve (AUC) by constructing a trifunctional ligand that binds FAPα with high affinity and also binds albumin and theranostic radiometals. PROCEDURES: RPS-309 comprised a FAPα-targeting moiety, an albumin-binding group, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Inhibition of recombinant human FAPα (rhFAPα) was determined by colorimetric assay. Affinity for human serum albumin (HSA) was determined by high-performance affinity chromatography. The tissue distribution of [68Ga]Ga-RPS-309 in SW872 tumor xenograft-bearing mice was imaged by microPET/CT and quantified by biodistribution studies performed from 30 min to 3 h post injection (p.i.). The biodistribution of [177Lu]Lu-RPS-309 was determined at 4, 24, and 96 h p.i. RESULTS: RPS-309 inhibits rhFAPα with IC50 = 7.3 ± 1.4 nM. [68Ga]Ga-RPS-309 is taken up specifically by FAPα-expressing cells and binds HSA with Kd = 4.6 ± 0.1 µM. Uptake of the radiolabeled ligand in tumors was evident from 30 min p.i. (> 5 %ID/g) and was significantly reduced by co-injection of RPS-309. Specific skeletal uptake was also observed. Activity in tumors was constant through 4 h p.i., but cleared significantly by 24 h. The AUC in this period was 127 (%ID/g) × h. CONCLUSIONS: RPS-309 is a high-affinity FAPα inhibitor with prolonged plasma residence. Introduction of the albumin-binding group did not compromise FAPα binding. Although initial tumor uptake was high and FAPα-specific, RPS-309 also progressively cleared from tumors. Nevertheless, RPS-309 incorporates multiple sites in which structural diversity can be introduced, and therefore serves as a platform for future structure-activity relationship studies.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Medicina de Precisão/métodos , Compostos Radiofarmacêuticos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Feminino , Humanos , Ligantes , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
14.
EJNMMI Radiopharm Chem ; 6(1): 38, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34928478

RESUMO

BACKGROUND: As 225Ac-labeled radiopharmaceuticals continue to show promise as targeted alpha therapeutics, there is a growing need to standardize quality control (QC) testing procedures. The determination of radiochemical purity (RCP) is an essential QC test. A significant obstacle to RCP testing is the disruption of the secular equilibrium between actinium-225 and its daughter radionuclides during labeling and QC testing. In order to accelerate translation of actinium-225 targeted alpha therapy, we aimed to determine the earliest time point at which the RCP of an 225Ac-labeled radiopharmaceutical can be accurately quantified. RESULTS: Six ligands were conjugated to macrocyclic metal chelators and labeled with actinium-225 under conditions designed to generate diverse incorporation yields. RCP was determined by radio thin layer chromatography (radioTLC) followed by exposure of the TLC plate on a phosphor screen either 0.5, 2, 3.5, 5, 6.5, or 26 h after the plate was developed. The dataset was used to create models for predicting the true RCP for any pre-equilibrium measurement taken at an early time point. The 585 TLC measurements span RCP values of 1.8-99.5%. The statistical model created from these data predicted an independent data set with high accuracy. Predictions made at 0.5 h are more uncertain than predictions made at later time points. This is primarily due to the decay of bismuth-213. A measurement of RCP > 90% at 2 h predicts a true RCP > 97% and guarantees that RCP will exceed 90% after secular equilibrium is reached. These findings were independently validated using NaI(Tl) scintillation counting and high resolution gamma spectroscopy on a smaller set of samples with 10% ≤ RCP ≤ 100%. CONCLUSIONS: RCP of 225Ac-labeled radiopharmaceuticals can be quantified with acceptable accuracy at least 2 h after radioTLC using various methods of quantifying particle emissions. This time point best balances the need to accurately quantify RCP with the need to safely release the batch as quickly as possible.

15.
Sci Adv ; 5(9): eaax4762, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31548988

RESUMO

Reproducible batch synthesis of radioligands for imaging by positron emission tomography (PET) in a manner that maximizes ligand yield, purity, and molar activity, and minimizes cost and exposure to radiation, remains a challenge, as new and synthetically complex radioligands become available. Commercially available automated synthesis units (ASUs) solve many of these challenges but are costly to install and cannot always accommodate diverse chemistries. Through a reiterative design process, we exploit the proliferation of three-dimensional (3D) printing technologies to translate optimized reaction conditions into ASUs composed of 3D-printed, electronic, and robotic parts. Our units are portable and robust and reduce radiation exposure, shorten synthesis time, and improve the yield of the final radiopharmaceutical for a fraction of the cost of a commercial ASU. These 3D-printed ASUs highlight the gains that can be made by designing a fit-for-purpose ASU to accommodate a synthesis over accommodating a synthesis to an unfit ASU.


Assuntos
Automação , Tomografia por Emissão de Pósitrons , Impressão Tridimensional
16.
J Nucl Med ; 60(5): 656-663, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552199

RESUMO

Despite significant gains in the treatment of metastatic castration-resistant prostate cancer by radioligands targeting prostate-specific membrane antigen (PSMA), 30% of patients never respond to therapy. One possible explanation is insufficient dose delivery to the tumor because of suboptimal pharmacokinetics. We have recently described RPS-063, a trifunctional ligand targeting PSMA with high uptake in LNCaP xenograft tumors but also in kidneys. We aimed to use structural modifications to increase the tumor-to-kidney ratio through increased albumin binding and tumor uptake and reduction of kidney activity. Methods: Four structurally related trifunctional PSMA-targeting small molecules were prepared by either varying the albumin-binding group or inserting a polyethylene glycol 8 linker into a common structure. The compounds were ranked by PSMA affinity and albumin affinity and were radiolabeled with 68Ga and 177Lu. Tissue kinetics were determined in male BALB/C nu/nu mice bearing LNCaP xenograft tumors. Results: Each of the compounds binds PSMA with a half-maximal inhibitory concentration of no more than 10 nM. The albumin-binding group had a minimal effect on PSMA affinity but changed albumin affinity by an order of magnitude. However, the addition of a polyethylene glycol 8 spacer weakened affinity for albumin in each case. Increased affinity for albumin corresponded with delayed blood clearance and modified uptake kinetics in the tumor and kidney. Uptake of 177Lu-RPS-072 (34.9 ± 2.4 %ID/g) and 177Lu-RPS-077 (27.4 ± 0.6 %ID/g) increased up to 24 h after injection, and washout by 96 h was not significant. As a result, the area under the curve (AUC) in the tumor was in the following order: 177Lu-RPS-072 > 177Lu-RPS-077 > 177Lu-RPS-063 > 177Lu-RPS-071. Increased linker length corresponded to more rapid clearance from kidneys. Consequently, the ratio of tumor AUC and kidney AUC was 4.7 ± 0.3 for 177Lu-RPS-072. Conclusion: The tumor AUC and tumor-to-kidney ratio of 177Lu-RPS-072 are significantly enhanced compared with any small molecule investigated in a LNCaP xenograft model to date. In comparison to other PSMA-targeting radioligands that have been evaluated in a PC3-PIP model, activity in kidneys is reduced and activity in tumors compares favorably when the different PSMA expression levels in LNCaP and PC3-PIP cells are considered. RPS-072 therefore exhibits an increased therapeutic index, shows the potential to increase the dose delivered to tumors, and is a highly promising candidate for targeted radioligand therapy.


Assuntos
Albuminas/metabolismo , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/radioterapia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Radioquímica , Distribuição Tecidual , Resultado do Tratamento
17.
J Nucl Med ; 60(5): 649-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30413660

RESUMO

Promising biochemical responses to 225Ac-prostate-specific membrane antigen (PSMA) 617, even in patients who are refractory to ß-particle radiation, illustrate the potential of targeted α-therapy for the treatment of metastatic castration-resistant prostate cancer. However, side effects such as xerostomia are severe and irreversible. To fully harness the potential of targeted α-therapy, it is necessary to increase the therapeutic index of the targeted radioligands. One emerging strategy is to increase clearance half-life through enhanced binding to serum albumin. We have evaluated the albumin-binding PSMA-targeting ligand RPS-074 in a LNCaP xenograft model to determine its potential value to the treatment of prostate cancer. Methods:225Ac-RPS-074 was evaluated in male BALB/c mice bearing LNCaP xenograft tumors. A biodistribution study was performed over 21 d to determine the dosimetry in tumors and normal tissue. The dose response was measured in groups of 7 mice using 37, 74, and 148 kBq of 225Ac-RPS-074 and compared with positive and negative control groups. Mice were sacrificed when tumor volume exceeded 1,500 mm3Results:225Ac-RPS-074 was labeled in greater than 98% radiochemical yield and showed high (>10% injected dose/g) and sustained accumulation in LNCaP tumors from 24 h to beyond 14 d. Signal in blood and highly vascularized tissues was evident over the first 24 h after injection and cleared by 7 d. The tumor-to-kidney ratio was 4.3 ± 0.7 at 24 h and 62.2 ± 9.5 at 14 d. A single injection of 148 kBq induced a complete response in 6 of 7 tumors, with no apparent toxic effects. Treatment with 74 kBq induced a partial response in 7 of 7 tumors, but from 42 d, 6 of 7 experienced significant regrowth. The 37-kBq group experienced a survival benefit relative to the negative control but not compared with the positive control group. Conclusion: A single dose of 148 kBq of 225Ac-RPS-074 induced a complete response in 86% of tumors, with tumor-to-normal-tissue ratios that predict an improved therapeutic index. The use of the macropa chelator enabled quantitative radiolabeling and may facilitate the clinical translation of this promising targeted α-therapeutic.


Assuntos
Transformação Celular Neoplásica , Neoplasias da Próstata/radioterapia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Meia-Vida , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Radioquímica , Radiometria , Distribuição Tecidual , Resultado do Tratamento
18.
Nucl Med Biol ; 53: 37-39, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803001

RESUMO

Performance of a second itG 68Ge/68Ga generator system and production of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC were tested over one year as an accompaniment to a previously published study (J Nucl Med. 2016;57:1402-1405). METHODS: Performance of a 1951MBq 68Ge/68Ga generator was characterized and the eluate used for preparation of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC. Weekly elution profiles of 68Ga elution yield and 68Ge breakthrough were determined. RESULTS: 68Ga elution yields averaged 82% (61.8-98.4%) and 68Ge breakthrough averaged 0.002% (0.0007% to 0.004%). The radiochemical purities of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC were determined by HPLC analysis to be >98% and specific activity was 12.6 and 42GBq/µmol, respectively. 68Ge contamination in the product was under the detection limit (0.00001%). Final sterile, pyrogen-free formulation of 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC in physiologic saline with 5%-7% ethanol was achieved. CONCLUSION: Performance of a 68Ge/68Ga generator was studied over one year with satisfactory results. The generator eluate was used to synthesize 68Ga-DOTATOC and 68Ga-PSMA-HBED-CC on a routine basis in high purity.


Assuntos
Ácido Edético/análogos & derivados , Octreotida/análogos & derivados , Oligopeptídeos/química , Compostos Organometálicos/química , Radioquímica/métodos , Radioquímica/normas , Ácido Edético/química , Isótopos de Gálio , Radioisótopos de Gálio , Octreotida/química , Controle de Qualidade
19.
Nucl Med Biol ; 55: 38-46, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29055836

RESUMO

INTRODUCTION: Recent successes in the treatment of metastatic castration-resistant prostate cancer (mCRPCa) by systemic endoradiotherapy has sparked renewed interest in developing small molecule ligands targeting prostate-specific membrane antigen (PSMA) and chelators capable of stable complexation of metal radionuclides for imaging and therapy. As the size and coordination number of metals for imaging, such as 68Ga3+, and for targeted therapy, such as 177Lu3+ and 225Ac3+, are substantially different, they may show a preference for macrocycles of different denticity. We have prepared three simple conjugates that target PSMA and form radiometal complexes through coordination by either octa-, deca-, or dodecadentate tetraazacyclododecane chelators. The complex formation and metal ion selectivity of these constructs were determined at two relevant temperatures, complex stability was examined in vitro, and tumor targeting was demonstrated in preclinical PCa models with a view towards identifying a candidate with potential value as a theranostic agent for the imaging and therapy of mCRPCa. METHODS: Three bifunctional chelates with high denticity, including the octadentate chelate DOTA, the decadentate 3p-C-DEPA and a novel dodecadentate analogue of DEPA, were synthesized and conjugated to a glutamate-urea-lysine (EuK) pharmacophore (EuK-DOTA, EuK-107 and EuK-106, respectively) to enable targeting of PSMA. The metal ion selectivity for each construct was determined by incubation at 25 °C and 95 °C with the trivalent radiometals 68Ga3+, 111In3+, 177Lu3+ and 225Ac3+. PSMA binding affinity was determined by competitive binding using LNCaP cells, while in vivo tumor targeting of the 68Ga-labeled constructs was examined by positron emission tomography (PET) in LNCaP xenograft tumor-bearing mice. RESULTS: PMSA affinities (IC50 values) were 13.3 ± 0.9 nM for EuK-DOTA, 18.0 ± 3.7 nM for EuK-107 and 42.6 ± 6.6 nM for EuK-106. EuK-107 and EuK-DOTA proved to rapidly and near quantitatively complex 68Ga3+, 111In3+, 177Lu3+ and 225Ac3+ at 95 °C, with EuK-107 also rapidly complexing 111In3+ and 177Lu3+ at 25 °C. The inability of EuK-106 to chelate 177Lu3+ and 225Ac3+ suggests that size of the cavity of the macrocylic ring may be more critical than the number of donor groups for the chelation of larger radiometals. In vivo, 68Ga-EuK-107 proved to have similar uptake to 68Ga-DKFZ-PSMA-617, a theranostic ligand currently in clinical evaluation, in a PSMA positive xenograft tumor model. CONCLUSIONS: The broad metal ion selectivity, good in vitro affinity for PSMA and good in vivo tumor targeting suggest that EuK-107, with the 3p-C-DEPA chelator, merits further evaluation as a theranostics construct in prostate cancer.


Assuntos
Antígenos de Superfície/metabolismo , Quelantes/química , Glutamato Carboxipeptidase II/metabolismo , Radioisótopos/química , Actínio/química , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Radioisótopos de Gálio/química , Humanos , Radioisótopos de Índio/química , Cinética , Ligantes , Lutécio/química , Tomografia por Emissão de Pósitrons
20.
J Nucl Med ; 58(9): 1442-1449, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28450562

RESUMO

Prostate-specific membrane antigen (PSMA)-targeted radiotherapy of prostate cancer (PCa) has emerged recently as a promising approach to the treatment of disseminated disease. A small number of ligands have been evaluated in patients, and although early tumor response is encouraging, relapse rate is high and these compounds localize to the parotid, salivary, and lacrimal glands as well as to the kidney, leading to dose-limiting toxicities and adverse events affecting quality of life. We envision that dual-target binding ligands displaying high affinity for PSMA and appropriate affinity for human serum albumin (HSA) may demonstrate a higher therapeutic index and be suitable for treatment of PCa by targeted α-therapy. Methods: Six novel urea-based ligands with varying affinities for PSMA and HSA were synthesized, labeled with 131I, and evaluated by in vitro binding and uptake assays in LNCaP cells. Four compounds were advanced for further evaluation in a preclinical model of PCa. The compounds were compared with MIP-1095, a PSMA ligand currently in clinical evaluation. Results: The compounds demonstrated affinity for PSMA on the order of 4-40 nM and affinity for HSA in the range of 1-53 µM. Compounds with relatively high affinity for HSA (≤2 µM) showed high and sustained blood-pool activity and reduced uptake in the kidneys. 131I-RPS-027, with a 50% inhibitory concentration (PSMA) of 15 nM and a dissociation constant (HSA) of 11.2 µM, cleared from the blood over the course of 48 h and showed good tumor uptake (10 percentage injected dose per gram) and retention and a greater than 5-fold decrease in kidney uptake relative to MIP-1095. The tumor-to-kidney ratio of 131I-RPS-027 was greater than 3:1 at 24 h after injection, increasing to 7:1 by 72 h. Conclusion: RPS-027 shows dual targeting to PSMA and albumin, resulting in a high tumor uptake, highly favorable tissue distribution, and promising therapeutic profile in a preclinical model of prostate cancer. In comparison to existing ligands proposed for targeted therapy of prostate cancer, RPS-027 has tumor-to-tissue ratios that predict a significant reduction in side effects during therapy. Using iodine/radioiodine as a surrogate for the radiohalogen 211At, we therefore propose dual-target binding ligands such as RPS-027 as next-generation radiopharmaceuticals for targeted α-therapy using 211At.


Assuntos
Terapia de Alvo Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Partículas alfa/uso terapêutico , Animais , Astato/uso terapêutico , Linhagem Celular Tumoral , Humanos , Ligantes , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/patologia , Radioquímica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa