Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Mol Psychiatry ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480874

RESUMO

BACKGROUND: Painful physical symptoms (PPS) are highly prevalent in patients with major depressive disorder (MDD). Presence of PPS in depressed patients are potentially associated with poorer antidepressant treatment outcome. We aimed to evaluate the association of baseline pain levels and antidepressant treatment outcomes. METHODS: We searched PubMed, Embase and Cochrane Library databases from inception through February 2023 based on a pre-registered protocol (PROSPERO: CRD42022381349). We included original studies that reported pretreatment pain measures in antidepressant treatment responder/remitter and non-responder/non-remitter among patients with MDD. Data extraction and quality assessment were performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses by two reviewers independently. The primary outcome was the difference of the pretreatment pain levels between antidepressant treatment responder/remitter and non-responder/non-remitter. Random-effects meta-analysis was used to calculate effect sizes (Hedge's g) and subgroup and meta-regression analyses were used to explore sources of heterogeneity. RESULTS: A total of 20 studies were included. Six studies reported significantly higher baseline pain severity levels in MDD treatment non-responders (Hedge's g = 0.32; 95% CI, 0.13-0.51; P = 0.0008). Six studies reported the presence of PPS (measured using a pain severity scale) was significantly associated with poor treatment response (OR = 1.46; 95% CI, 1.04-2.04; P = 0.028). Five studies reported significant higher baseline pain interference levels in non-responders (Hedge's g = 0.46; 95% CI, 0.32-0.61; P < 0.0001). Four studies found significantly higher baseline pain severity levels in non-remitters (Hedge's g = 0.27; 95% CI, 0.14-0.40; P < 0.0001). Eight studies reported the presence of PPS significantly associated with treatment non-remission (OR = 1.70; 95% CI, 1.24-2.32; P = 0.0009). CONCLUSIONS: This study suggests that PPS are negatively associated with the antidepressant treatment outcome in patients with MDD. It is possible that better management in pain conditions when treating depression can benefit the therapeutic effects of antidepressant medication in depressed patients.

2.
Mol Psychiatry ; 28(10): 4280-4293, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37488168

RESUMO

Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.


Assuntos
Transtorno Bipolar , Lítio , Humanos , Lítio/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/diagnóstico , Genes de Imunoglobulinas , Compostos de Lítio/farmacologia , Compostos de Lítio/uso terapêutico , Linhagem Celular
3.
Mol Psychiatry ; 27(9): 3842-3856, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546635

RESUMO

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.


Assuntos
Transtorno Bipolar , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Redes Reguladoras de Genes/genética , Cerebelo/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(8): 4392-4399, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041882

RESUMO

The pathogenesis of bipolar disorder (BD) has remained enigmatic, largely because genetic animal models based on identified susceptible genes have often failed to show core symptoms of spontaneous mood cycling. However, pedigree and induced pluripotent stem cell (iPSC)-based analyses have implicated that dysfunction in some key signaling cascades might be crucial for the disease pathogenesis in a subpopulation of BD patients. We hypothesized that the behavioral abnormalities of patients and the comorbid metabolic abnormalities might share some identical molecular mechanism. Hence, we investigated the expression of insulin/synapse dually functioning genes in neurons derived from the iPSCs of BD patients and the behavioral phenotype of mice with these genes silenced in the hippocampus. By these means, we identified synaptotagmin-7 (Syt7) as a candidate risk factor for behavioral abnormalities. We then investigated Syt7 knockout (KO) mice and observed nocturnal manic-like and diurnal depressive-like behavioral fluctuations in a majority of these animals, analogous to the mood cycling symptoms of BD. We treated the Syt7 KO mice with clinical BD drugs including olanzapine and lithium, and found that the drug treatments could efficiently regulate the behavioral abnormalities of the Syt7 KO mice. To further verify whether Syt7 deficits existed in BD patients, we investigated the plasma samples of 20 BD patients and found that the Syt7 mRNA level was significantly attenuated in the patient plasma compared to the healthy controls. We therefore concluded that Syt7 is likely a key factor for the bipolar-like behavioral abnormalities.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Bipolar/psicologia , Sinaptotagminas/metabolismo , Adulto , Animais , Comportamento , Transtorno Bipolar/sangue , Transtorno Bipolar/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Sinaptotagminas/genética , Adulto Jovem
5.
Mol Psychiatry ; 26(6): 2440-2456, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398088

RESUMO

Bipolar disorder (BD) is a psychiatric condition characterized by depressive and manic episodes that affect 2% of the world population. The first-line long-term treatment for mood stabilization is lithium (Li). Induced pluripotent stem cell modeling of BD using hippocampal dentate gyrus-like neurons derived from Li-responsive (LR) and Li-non-responsive (NR) patients previously showed neuronal hyperexcitability. Li treatment reversed hyperexcitability only on the LR neurons. In this study we searched for specific targets of Li resistance in NR neurons and found that the activity of Wnt/ß-catenin signaling pathway was severely affected, with a significant decrease in expression of LEF1. Li targets the Wnt/ß-catenin signaling pathway by inhibiting GSK-3ß and releasing ß-catenin that forms a nuclear complex with TCF/LEF1, activating the Wnt/ß-catenin transcription program. Therefore, we propose that downregulation of LEF1 may account for Li resistance in NR neurons. Our results show that valproic acid (VPA), a drug used to treat NR patients that also acts downstream of GSK-3ß, upregulated LEF1 and Wnt/ß-catenin gene targets, increased transcriptional activity of complex ß-catenin/TCF/LEF1, and reduced excitability in NR neurons. In addition, decreasing LEF1 expression in control neurons using shLEF1 caused hyperexcitability, confirming that the impact of VPA on excitability in NR neurons was connected to changes in LEF1 and in the Wnt/ß-catenin pathway. Our results suggest that LEF1 may be a useful target for the discovery of new drugs for BD treatment.


Assuntos
Transtorno Bipolar , Lítio , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Lítio/farmacologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
6.
Mol Psychiatry ; 26(7): 3383-3394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33674753

RESUMO

Bipolar disorder (BD) is a neuropsychiatric illness defined by recurrent episodes of mania/hypomania, depression and circadian rhythm abnormalities. Lithium is an effective drug for BD, but 30-40% of patients fail to respond adequately to treatment. Previous work has demonstrated that lithium affects the expression of "clock genes" and that lithium responders (Li-R) can be distinguished from non-responders (Li-NR) by differences in circadian rhythms. However, circadian rhythms have not been evaluated in BD patient neurons from Li-R and Li-NR. We used induced pluripotent stem cells (iPSCs) to culture neuronal precursor cells (NPC) and glutamatergic neurons from BD patients characterized for lithium responsiveness and matched controls. We identified strong circadian rhythms in Per2-luc expression in NPCs and neurons from controls and Li-R, but NPC rhythms in Li-R had a shorter circadian period. Li-NR rhythms were low amplitude and profoundly weakened. In NPCs and neurons, expression of PER2 was higher in both BD groups compared to controls. In neurons, PER2 protein levels were higher in BD than controls, especially in Li-NR samples. In single cells, NPC and neuron rhythms in both BD groups were desynchronized compared to controls. Lithium lengthened period in Li-R and control neurons but failed to alter rhythms in Li-NR. In contrast, temperature entrainment increased amplitude across all groups, and partly restored rhythms in Li-NR neurons. We conclude that neuronal circadian rhythm abnormalities are present in BD and most pronounced in Li-NR. Rhythm deficits in BD may be partly reversible through stimulation of entrainment pathways.


Assuntos
Transtorno Bipolar , Lítio , Transtorno Bipolar/tratamento farmacológico , Ritmo Circadiano , Humanos , Lítio/farmacologia , Compostos de Lítio/farmacologia , Neurônios
7.
Bipolar Disord ; 24(5): 521-529, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34825444

RESUMO

BACKGROUND: Bipolar disorder (BD) is characterized by episodes of depression and mania and disrupted circadian rhythms. Lithium is an effective therapy for BD, but only 30%-40% of patients are fully responsive. Preclinical models show that lithium alters circadian rhythms. However, it is unknown if the circadian rhythm effects of lithium are essential to its therapeutic properties. METHODS: In secondary analyses of a multi-center, prospective, trial of lithium for BD, we examined the relationship between circadian rhythms and therapeutic response to lithium. Using standardized instruments, we measured morningness, diurnal changes in mood, sleep, and energy (circadian rhythm disturbances) in a cross-sectional study of 386 BD subjects with varying lithium exposure histories. Next, we tracked symptoms of depression and mania prospectively over 12 weeks in a subset of 88 BD patients initiating treatment with lithium. Total, circadian, and affective mood symptoms were scored separately and analyzed. RESULTS: Subjects with no prior lithium exposure had the most circadian disruption, while patients stable on lithium monotherapy had the least. Patients who were stable on lithium with another drug or unstable on lithium showed intermediate levels of disruption. Treatment with lithium for 12 weeks yielded significant reductions in total and affective depression symptoms. Lithium responders (Li-Rs) showed improvement in circadian symptoms of depression, but non-responders did not. There was no difference between Li-Rs and nonresponders in affective, circadian, or total symptoms of mania. CONCLUSIONS: Exposure to lithium is associated with reduced circadian disruption. Lithium response at 12 weeks was selectively associated with the reduction of circadian depressive symptoms. We conclude that stabilization of circadian rhythms may be an important feature of lithium's therapeutic effects. CLINICAL TRIALS REGISTRY: NCT0127253.

8.
Mol Psychiatry ; 25(2): 339-350, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31427752

RESUMO

Predicting antidepressant treatment response has been a clinical challenge for major depressive disorder (MDD). The inflammation hypothesis of depression suggests that cytokines play a key role in the pathophysiology of MDD and alterations in peripheral cytokine levels are associated with antidepressant treatment outcome. Present meta-analysis aimed to examine the association between baseline peripheral cytokine levels and the response to antidepressant treatment and to evaluate whether changes of cytokine levels were associated with the response to antidepressant treatment in patients with MDD. Human-based studies published in any language in peer-reviewed journals were systematically searched from the PubMed, Embase and Web of Science databases, from inception up to October 2018. The search terms included cytokine, depressive disorder and antidepressant and their synonyms. Case-control or case-case studies reporting on levels of IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, CRP, TNF-α, IFN-γ, GM-CSF, MIP-1α, and Eotaxin-1 in patients with MDD based on validated depression scales both before and after antidepressant treatment were included. Of 7408 identified records, 44 studies met inclusion. Standardized mean differences in each cytokine were evaluated, and random-effects meta-analyses were performed. MDD patients who responded to antidepressant treatment had lower baseline IL-8 levels than the nonresponders (Hedge's g = -0.28; 95%CI, -0.43 to -0.13; P = 0.0003; FDR = 0.004). Antidepressant treatment significantly decreased levels of TNF-α (Hedge's g = 0.60; 95%CI, 0.26-0.94; P = 0.0006; FDR = 0.004) only in responders, and responders showed significantly more decreased TNF-α levels compared with nonresponders (P = 0.046). These findings suggested that alterations in peripheral cytokine levels were associated with antidepressant treatment outcomes in MDD. Further investigations are warranted to elucidate sources of heterogeneity and examine the potentiality of using inflammatory cytokines as novel predictive markers for the pharmacological treatment of MDD.


Assuntos
Biomarcadores Farmacológicos/sangue , Citocinas/análise , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Citocinas/sangue , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Resultado do Tratamento
9.
Mol Psychiatry ; 25(6): 1312-1322, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874608

RESUMO

Predicting antidepressant response has been a clinical challenge for mood disorder. Although several genome-wide association studies have suggested a number of genetic variants to be associated with antidepressant response, the sample sizes are small and the results are difficult to replicate. Previous animal studies have shown that knockout of the serotonin receptor 7 gene (HTR7) resulted in an antidepressant-like phenotype, suggesting it was important to antidepressant action. In this report, in the first stage, we used a cost-effective pooled-sequencing strategy to sequence the entire HTR7 gene and its regulatory regions to investigate the association of common variants in HTR7 and clinical response to four selective serotonin reuptake inhibitors (SSRIs: citalopram, paroxetine, fluoxetine and sertraline) in a retrospective cohort mainly consisting of subjects with bipolar disorder (n = 359). We found 80 single-nucleotide polymorphisms (SNPs) with false discovery rate < 0.05 associated with response to paroxetine. Among the significant SNPs, rs7905446 (T/G), which is located at the promoter region, also showed nominal significance (P < 0.05) in fluoxetine group. GG/TG genotypes for rs7905446 and female gender were associated with better response to two SSRIs (paroxetine and fluoxetine). In the second stage, we replicated this association in two independent prospective samples of SSRI-treated patients with major depressive disorder: the MARS (n = 253, P = 0.0169) and GENDEP studies (n = 432, P = 0.008). The GG/TG genotypes were consistently associated with response in all three samples. Functional study of rs7905446 showed greater activity of the G allele in regulating expression of HTR7. The G allele displayed higher luciferase activity in two neuronal-related cell lines, and estrogen treatment decreased the activity of only the G allele. Electrophoretic mobility shift assay suggested that the G allele interacted with CCAAT/enhancer-binding protein beta transcription factor (TF), while the T allele did not show any interaction with any TFs. Our results provided novel pharmacogenomic evidence to support the role of HTR7 in association with antidepressant response.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Receptores de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Citalopram/uso terapêutico , Feminino , Fluoxetina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Paroxetina/uso terapêutico , Estudos Retrospectivos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/uso terapêutico , Adulto Jovem
10.
Nature ; 527(7576): 95-9, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26524527

RESUMO

Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antipsicóticos/farmacologia , Transtorno Bipolar/patologia , Compostos de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Sinalização do Cálcio/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Giro Denteado/patologia , Endofenótipos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Mitocôndrias/patologia , Técnicas de Patch-Clamp
11.
Depress Anxiety ; 37(9): 842-850, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32667102

RESUMO

BACKGROUND: Novel technologies make it possible to incorporate pharmacogenetic testing into the medical management of depression. However, previous studies indicate that there may be a subset of subjects who have concerns about genetic testing and may be psychologically vulnerable. If so, pharmacogenetic testing in depressed subjects could negatively impact their mental health and undermine treatment goals. METHODS: In this study, we developed a standardized instrument to assess motivations and attitudes around pharmacogenetic testing in a cohort of 170 depressed Veterans participating in a multi-center clinic trial. RESULTS: Testing reveals that subjects were largely positive about the use of genetic testing to guide pharmacological treatment and help plan their future. Most subjects showed only modest concerns about the impact on family, inability to cope with the results, and fear of discrimination. The severity of depression did not predict the concern expressed about negative outcomes. However, non-Caucasian subjects were more likely on average to endorse concerns about poor coping and fear of discrimination. CONCLUSIONS: These data indicate that while the overall risk is modest, some patients with depression may face psychosocial challenges in the context of pharmacogenetic testing. Future work should identify factors that predict distress and aim to tailor test results to different populations.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Testes Farmacogenômicos , Atitude , Depressão , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/genética , Testes Genéticos , Humanos , Motivação
12.
Drug Dev Res ; 80(8): 1128-1135, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31498915

RESUMO

Bipolar disorder (BD) is a complex neuropsychiatric disorder characterized by recurrent mania and depression episodes and requiring lifelong treatment with mood stabilizing drugs. Several lines of evidence, including with BD patient iPSC-derived neurons, suggest that neuronal hyperexcitability may underlie the key clinical symptoms of BD. Indeed, higher mRNA levels of SCN11A, coding for the voltage-gated sodium channel NaV 1.9 implicated in nociception, were detected in iPSC-derived neurons from BD patients, and were normalized by in vitro lithium. Here we studied SCN11A expression in peripheral blood mononuclear cells (PBMCs) from well-phenotyped female BD patients and controls and evaluated their association with several clinical sub-phenotypes. We observed higher mRNA levels of SCN11A in PBMCs from female BD patients with no records of alcohol dependence (p = .0050), no records of psychosis (p = .0097), or no records of suicide attempts (p = .0409). A trend was observed for higher SCN11A expression (FD = 1.91; p = .052) in BD PBMCs compared with controls. Datamining of published postmortem gene expression datasets indicated higher SCN11A expression in dorsolateral prefrontal cortex and orbitofrontal cortex tissues from BD patients compared with controls. Higher phenotype-associated expression levels in PBMC from BD patients were also observed for ID2 (alcohol dependence, suicide attempts) and HDGFRP3 (seasonal BD pattern). Our findings suggest that higher PBMC SCN11A expression levels may be associated with certain behavioral BD sub-phenotypes, including lack of alcohol dependence and psychosis, among BD patients. The NaV 1.9 voltage-gated sodium channel thus deserves consideration as a tentative phenotype modifier in BD.


Assuntos
Transtorno Bipolar/genética , Marcadores Genéticos , Leucócitos Mononucleares/química , Regulação para Cima , Adulto , Transtorno Bipolar/sangue , Estudos de Casos e Controles , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína 2 Inibidora de Diferenciação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Fenótipo , Estudos Retrospectivos , Adulto Jovem
13.
Proc Natl Acad Sci U S A ; 112(11): 3576-81, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25730879

RESUMO

We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.


Assuntos
Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Predisposição Genética para Doença , Variação Genética , Neurônios/fisiologia , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Transdução de Sinais/genética , População Branca/genética
14.
Bipolar Disord ; 19(7): 544-551, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29116664

RESUMO

OBJECTIVES: Bipolar disorder has been studied from numerous angles, from pathological studies to large-scale genomic studies, overall making moderate gains toward an understanding of the disorder. With the advancement of induced pluripotent stem (iPS) cell technology, in vitro models based on patient samples are now available that inherently incorporate the complex genetic variants that largely are the basis for this disorder. A number of groups are starting to apply iPS technology to the study of bipolar disorder. METHODS: We selectively reviewed the literature related to understanding bipolar disorder based on using neurons derived from iPS cells. RESULTS: So far, most work has used the prototypical iPS cells. However, others have been able to transdifferentiate fibroblasts directly to neurons. Others still have utilized olfactory epithelium tissue as a source of neural-like cells that do not need reprogramming. In general, iPS and related cells can be used for studies of disease pathology, drug discovery, or stem cell therapy. CONCLUSIONS: Published studies have primarily focused on understanding bipolar disorder pathology, but initial work is also being done to use iPS technology for drug discovery. In terms of disease pathology, some evidence is pointing toward a differentiation defect with more ventral cell types being prominent. Additionally, there is evidence for a calcium signaling defect, a finding that builds on the genome-wide association study results. Continued work with iPS cells will certainly help us understand bipolar disorder and provide a way forward for improved treatments.


Assuntos
Transtorno Bipolar/fisiopatologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios/fisiologia , Animais , Transtorno Bipolar/metabolismo , Transdiferenciação Celular , Fibroblastos , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Transplante de Células-Tronco
15.
Nature ; 471(7339): 499-503, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21346763

RESUMO

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


Assuntos
Variações do Número de Cópias de DNA/genética , Genes Duplicados/genética , Predisposição Genética para Doença/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Esquizofrenia/genética , Linhagem Celular , Cromossomos Humanos Par 7/genética , Estudos de Coortes , AMP Cíclico/metabolismo , Feminino , Dosagem de Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Padrões de Herança/genética , Masculino , Linhagem , Receptores Tipo II de Peptídeo Intestinal Vasoativo/metabolismo , Reprodutibilidade dos Testes , Esquizofrenia/metabolismo , Transdução de Sinais , Transcrição Gênica/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-27378793

RESUMO

BACKGROUND: Antidepressant-worsening suicidal ideation is a rare but serious phenomenon. This study aimed to test for association between antidepressant-worsening suicidal ideation and polymorphisms of BDNF/NTRK2 neurotrophin pathway genes, known to be involved in depression and suicide. METHODS: This was a case-control study comparing patients with antidepressant-worsening suicidal ideation to patients without. Patients were collected from the GENESE cohort (3771 depressed tianeptine-treated outpatients). Antidepressant-worsening suicidal ideation was defined by an increase of at least 2 points on the Montgomery-Åsberg Depression Rating Scale-item10 during treatment. Controls were matched for age, sex, and baseline Montgomery-Åsberg Depression Rating Scale-item10 score. Thirteen single nucleotide polymorphisms covering 5 BDNF/NTRK2 pathway genes were genotyped. RESULTS: A total 78 cases and 312 controls were included. Two NTRK2 single nucleotide polymorphisms were associated to antidepressant-worsening suicidal ideation: rs1439050 (P=.01) and rs1867283 (P=.04). Association with rs1439050 remained significant after adjustment for potentially confounding factors, including previous suicide attempts (P<.01). CONCLUSIONS: This naturalistic prospective study is consistent with previous studies on highlighting the potential role of the neurotrophin pathway, and especially of NTRK2, in antidepressant-worsening suicidal ideation.


Assuntos
Antidepressivos/efeitos adversos , Depressão/tratamento farmacológico , Glicoproteínas de Membrana/genética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Receptor trkB/genética , Ideação Suicida , Tiazepinas/efeitos adversos , Adulto , Idoso , Assistência Ambulatorial , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos de Casos e Controles , Depressão/diagnóstico , Depressão/genética , Depressão/psicologia , Feminino , Frequência do Gene , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Testes Farmacogenômicos , Estudos Prospectivos , Fatores de Risco
18.
BMC Psychiatry ; 16: 129, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27150464

RESUMO

BACKGROUND: Bipolar disorder is a serious and common psychiatric disorder characterized by manic and depressive mood switches and a relapsing and remitting course. The cornerstone of clinical management is stabilization and prophylaxis using mood-stabilizing medications to reduce both manic and depressive symptoms. Lithium remains the gold standard of treatment with the strongest data for both efficacy and suicide prevention. However, many patients do not respond to this medication, and clinically there is a great need for tools to aid the clinician in selecting the correct treatment. Large genome wide association studies (GWAS) investigating retrospectively the effect of lithium response are in the pipeline; however, few large prospective studies on genetic predictors to of lithium response have yet been conducted. The purpose of this project is to identify genes that are associated with lithium response in a large prospective cohort of bipolar patients and to better understand the mechanism of action of lithium and the variation in the genome that influences clinical response. METHODS/DESIGN: This study is an 11-site prospective non-randomized open trial of lithium designed to ascertain a cohort of 700 subjects with bipolar I disorder who experience protocol-defined relapse prevention as a result of treatment with lithium monotherapy. All patients will be diagnosed using the Diagnostic Interview for Genetic Studies (DIGS) and will then enter a 2-year follow-up period on lithium monotherapy if and when they exhibit a score of 1 (normal, not ill), 2 (minimally ill) or 3 (mildly ill) on the Clinical Global Impressions of Severity Scale for Bipolar Disorder (CGI-S-BP Overall Bipolar Illness) for 4 of the 5 preceding weeks. Lithium will be titrated as clinically appropriate, not to exceed serum levels of 1.2 mEq/L. The sample will be evaluated longitudinally using a wide range of clinical scales, cognitive assessments and laboratory tests. On relapse, patients will be discontinued or crossed-over to treatment with valproic acid (VPA) or treatment as usual (TAU). Relapse is defined as a DSM-IV manic, major depressive or mixed episode or if the treating physician decides a change in medication is clinically necessary. The sample will be genotyped for GWAS. The outcome for lithium response will be analyzed as a time to event, where the event is defined as clinical relapse, using a Cox Proportional Hazards model. Positive single nucleotide polymorphisms (SNPs) from past genetic retrospective studies of lithium response, the Consortium on Lithium Genetics (ConLiGen), will be tested in this prospective study sample; a meta-analysis of these samples will then be performed. Finally, neurons will be derived from pluripotent stem cells from lithium responders and non-responders and tested in vivo for response to lithium by gene expression studies. SNPs in genes identified in these cellular studies will also be tested for association to response. DISCUSSION: Lithium is an extraordinarily important therapeutic drug in the clinical management of patients suffering from bipolar disorder. However, a significant proportion of patients, 30-40 %, fail to respond, and there is currently no method to identify the good lithium responders before initiation of treatment. Converging evidence suggests that genetic factors play a strong role in the variation of response to lithium, but only a few genes have been tested and the samples have largely been retrospective or quite small. The current study will collect an entirely unique sample of 700 patients with bipolar disorder to be stabilized on lithium monotherapy and followed for up to 2 years. This study will produce useful information to improve the understanding of the mechanism of action of lithium and will add to the development of a method to predict individual response to lithium, thereby accelerating recovery and reducing suffering and cost. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01272531 Registered: January 6, 2011.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Compostos de Lítio/uso terapêutico , Idoso , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Estudos Prospectivos , Estudos Retrospectivos , Prevenção Secundária , Ácido Valproico/uso terapêutico
19.
PLoS Genet ; 9(4): e1003449, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637621

RESUMO

Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1-FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohn's disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Fenótipo , Esquizofrenia/genética
20.
PLoS Genet ; 9(4): e1003455, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637625

RESUMO

Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the "missing heritability" of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q-Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versa with a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders.


Assuntos
Transtorno Bipolar , Estudo de Associação Genômica Ampla , Transtorno Bipolar/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa