Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991275

RESUMO

Neuroimage studies have reported functional connectome abnormalities in posttraumatic stress disorder (PTSD), especially in adults. However, these studies often treated the brain as a static network, and time-variance of connectome topology in pediatric posttraumatic stress disorder remain unclear. To explore case-control differences in dynamic connectome topology, resting-state functional magnetic resonance imaging data were acquired from 24 treatment-naïve non-comorbid pediatric posttraumatic stress disorder patients and 24 demographically matched trauma-exposed non-posttraumatic stress disorder controls. A graph-theoretic analysis was applied to construct time-varying modular structure of whole-brain networks by maximizing the multilayer modularity. Network switching rate at the global, subnetwork, and nodal levels were calculated and compared between posttraumatic stress disorder and trauma-exposed non-posttraumatic stress disorder groups, and their associations with posttraumatic stress disorder symptom severity and sex interactions were explored. At the global level, individuals with posttraumatic stress disorder exhibited significantly lower network switching rates compared to trauma-exposed non-posttraumatic stress disorder controls. This difference was mainly involved in default-mode and dorsal attention subnetworks, as well as in inferior temporal and parietal brain nodes. Posttraumatic stress disorder symptom severity was negatively correlated with switching rate in the global network and default mode network. No significant differences were observed in the interaction between diagnosis and sex/age. Pediatric posttraumatic stress disorder is associated with dynamic reconfiguration of brain networks, which may provide insights into the biological basis of this disorder.


Assuntos
Conectoma , Transtornos de Estresse Pós-Traumáticos , Adulto , Humanos , Criança , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Encéfalo , Conectoma/métodos
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955636

RESUMO

Although proline-rich transmembrane protein 2 is the primary causative gene of paroxysmal kinesigenic dyskinesia, its effects on the brain structure of paroxysmal kinesigenic dyskinesia patients are not yet clear. Here, we explored the influence of proline-rich transmembrane protein 2 mutations on similarity-based gray matter morphological networks in individuals with paroxysmal kinesigenic dyskinesia. A total of 51 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations, 55 paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, and 80 healthy controls participated in the study. We analyzed the structural connectome characteristics across groups by graph theory approaches. Relative to paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation and healthy controls, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations exhibited a notable increase in characteristic path length and a reduction in both global and local efficiency. Relative to healthy controls, both patient groups showed reduced nodal metrics in right postcentral gyrus, right angular, and bilateral thalamus; Relative to healthy controls and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations showed almost all reduced nodal centralities and structural connections in cortico-basal ganglia-thalamo-cortical circuit including bilateral supplementary motor area, bilateral pallidum, and right caudate nucleus. Finally, we used support vector machine by gray matter network matrices to classify paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 mutations and paroxysmal kinesigenic dyskinesia patients possessing proline-rich transmembrane protein 2 non-mutation, achieving an accuracy of 73%. These results show that proline-rich transmembrane protein 2 related gray matter network deficits may contribute to paroxysmal kinesigenic dyskinesia, offering new insights into its pathophysiological mechanisms.


Assuntos
Distonia , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Mutação , Distonia/diagnóstico por imagem , Distonia/genética , Encéfalo/diagnóstico por imagem , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642107

RESUMO

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Estudos Retrospectivos
4.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521993

RESUMO

Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Rede de Modo Padrão , Disfunção Cognitiva/patologia , Giro do Cíngulo , Lobo Temporal/patologia , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico
5.
NMR Biomed ; 37(8): e5117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38356104

RESUMO

It has been shown using proton magnetic resonance spectroscopy (1H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2:CH3) and IMCL concentration (measured as CH3), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Espectroscopia de Ressonância Magnética
6.
Liver Int ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847589

RESUMO

BACKGROUND AND AIMS: Exercise is recommended for the management of metabolic dysfunction-associated steatotic liver disease (MASLD), yet effects on liver histology remain unknown, especially without significant weight loss. We aimed to examine changes in surrogate measures of liver histological response with exercise training. METHODS: We conducted a post hoc pooled analysis of three randomised controlled trials (duration: 12-20 weeks) comparing aerobic exercise interventions with controls. The primary outcome measure was a ≥30% relative reduction in (MRI-measured) liver fat, as a surrogate measure of liver histological response (the threshold necessary for fibrosis improvement). Secondary outcome measures were changes in other biomarkers of liver fibrosis, anthropometry, body composition and aerobic fitness. RESULTS: Eighty-eight adults (exercise: 54, control: 34; male: 67%) were included with mean (SD) age 51 (11) years and body mass index 33.3 (5.2) kg/m2. Following the intervention, exercise had ~5-fold (OR [95%CI]: 4.86 [1.72, 13.8], p = .002) greater odds of ≥30% relative reduction in MRI-measured liver fat compared with control. This paralleled the improvements in anthropometry (waist and hip circumference reduction), body composition (body fat, visceral and subcutaneous adipose tissue) and aerobic fitness (V̇O2peak, ventilatory threshold and exercise capacity). Importantly, these effects were independent of clinically significant body weight loss (<3% body weight). CONCLUSION: Exercise training led to clinically meaningful improvements in surrogate serum- and imaging-based measures of liver histological change, without clinically meaningful body weight reduction. These data reinforce the weight-neutral benefit of exercise training and suggest that aerobic training may improve liver fibrosis in patients with MASLD.

7.
Cereb Cortex ; 33(23): 11373-11383, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37804248

RESUMO

Post-traumatic stress symptoms and post-traumatic growth are common co-occurring psychological responses following exposure to traumatic events (such as COVID-19 pandemic), their mutual relationship remains unclear. To explore this relationship, structural magnetic resonance imaging data were acquired from 115 general college students before the COVID-19 pandemic, and follow-up post-traumatic stress symptoms and post-traumatic growth measurements were collected during the pandemic. Voxel-based morphometry was conducted and individual structural covariance networks based on gray matter volume were further analyzed using graph theory and partial least squares correlation. Behavioral correlation found no significant relationship between post-traumatic stress symptoms and post-traumatic growth. Voxel-based morphometry analyses showed that post-traumatic stress symptoms were positively correlated with gray matter volume in medial prefrontal cortex/dorsal anterior cingulate cortex, and post-traumatic growth was negatively correlated with gray matter volume in left dorsolateral prefrontal cortex. Structural covariance network analyses found that post-traumatic stress symptoms were negatively correlated with the local efficiency and clustering coefficient of the network. Moreover, partial least squares correlation showed that post-traumatic stress symptoms were correlated with pronounced nodal properties patterns in default mode, sensory and motor regions, and a marginal correlation of post-traumatic growth with a nodal property pattern in emotion regulation-related regions. This study advances our understanding of the neurobiological substrates of post-traumatic stress symptoms and post-traumatic growth, and suggests that they may have different neuroanatomical features.


Assuntos
COVID-19 , Crescimento Psicológico Pós-Traumático , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Pandemias , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos
8.
Cereb Cortex ; 33(16): 9627-9638, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381581

RESUMO

Phenotyping approaches grounded in structural network science can offer insights into the neurobiological substrates of psychiatric diseases, but this remains to be clarified at the individual level in social anxiety disorder (SAD). Using a recently developed approach combining probability density estimation and Kullback-Leibler divergence, we constructed single-subject structural covariance networks (SCNs) based on multivariate morphometry (cortical thickness, surface area, curvature, and volume) and quantified their global/nodal network properties using graph-theoretical analysis. We compared network metrics between SAD patients and healthy controls (HC) and analyzed the relationship to clinical characteristics. We also used support vector machine analysis to explore the ability of graph-theoretical metrics to discriminate SAD patients from HC. Globally, SAD patients showed higher global efficiency, shorter characteristic path length, and stronger small-worldness. Locally, SAD patients showed abnormal nodal centrality mainly involving left superior frontal gyrus, right superior parietal lobe, left amygdala, right paracentral gyrus, right lingual, and right pericalcarine cortex. Altered topological metrics were associated with the symptom severity and duration. Graph-based metrics allowed single-subject classification of SAD versus HC with total accuracy of 78.7%. This finding, that the topological organization of SCNs in SAD patients is altered toward more randomized configurations, adds to our understanding of network-level neuropathology in SAD.


Assuntos
Conectoma , Fobia Social , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Córtex Cerebral , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Fobia Social/diagnóstico por imagem , Estudos de Casos e Controles
9.
Psychol Med ; 53(13): 6194-6204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36330833

RESUMO

BACKGROUND: Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS: Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS: SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS: SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.


Assuntos
Encefalopatias , Fobia Social , Humanos , Fobia Social/diagnóstico por imagem , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem
10.
Diabetes Obes Metab ; 25(12): 3621-3631, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37667658

RESUMO

AIM: This study assessed the impact of dapagliflozin on food intake, eating behaviour, energy expenditure, magnetic resonance imaging (MRI)-determined brain response to food cues and body composition in patients with type 2 diabetes mellitus (T2D). MATERIALS AND METHODS: Patients were given dapagliflozin 10 mg once daily in a randomized, double-blind, placebo-controlled trial with short-term (1 week) and long-term (12 weeks) cross-over periods. The primary outcome was the difference in test meal food intake between long-term dapagliflozin and placebo treatment. Secondary outcomes included short-term differences in test meal food intake, short- and long-term differences in appetite and eating rate, energy expenditure and functional MRI brain activity in relation to food images. We determined differences in glycated haemoglobin, weight, liver fat (by 1 H magnetic resonance spectroscopy) and subcutaneous/visceral adipose tissue volumes (by MRI). RESULTS: In total, 52 patients (43% were women) were randomized; with the analysis of 49 patients: median age 58 years, weight 99.1 kg, body mass index 35 kg/m2 , glycated haemoglobin 49 mmol/mol. Dapagliflozin reduced glycated haemoglobin by 9.7 mmol/mol [95% confidence interval (CI) 3.91-16.27, p = .004], and body weight (-2.84 vs. -0.87 kg) versus placebo. There was no short- or long-term difference in test meal food intake between dapagliflozin and placebo [mean difference 5.7 g (95% CI -127.9 to 139.3, p = .933); 15.8 g (95% CI -147.7 to 116.1, p = .813), respectively] nor in the rate of eating, energy expenditure, appetite, or brain responses to food cues. Liver fat (median reduction -4.7 vs. 1.95%), but not subcutaneous/visceral adipose tissue, decreased significantly with 12 weeks of dapagliflozin. CONCLUSIONS: The reduction in body weight and liver fat with dapagliflozin was not associated with compensatory adaptations in food intake or energy expenditure.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/uso terapêutico , Hemoglobinas Glicadas , Estudos Cross-Over , Compostos Benzidrílicos/uso terapêutico , Fígado/diagnóstico por imagem , Fígado/metabolismo , Peso Corporal , Metabolismo Energético , Método Duplo-Cego , Resultado do Tratamento , Glicemia/metabolismo
11.
Cereb Cortex ; 32(21): 4857-4868, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35078209

RESUMO

Mild cognitive impairment in Parkinson's disease (PD-M) is related to a high risk of dementia. This study explored the whole-brain functional networks in early-stage PD-M. Forty-one patients with PD classified as cognitively normal (PD-N, n = 17) and PD-M (n = 24) and 24 demographically matched healthy controls (HC) underwent clinical and neuropsychological evaluations and resting-state functional magnetic resonance imaging. The global, regional, and modular topological characteristics were assessed in the brain functional networks, and their relationships to cognitive scores were tested. At the global level, PD-M and PD-N exhibited higher characteristic path length and lower clustering coefficient, local and global efficiency relative to HC. At the regional level, PD-M and PD-N showed lower nodal centrality in sensorimotor regions relative to HC. At the modular level, PD-M showed lower intramodular connectivity in default mode and cerebellum modules, and lower intermodular connectivity between default mode and frontoparietal modules than PD-N, correlated with Montreal Cognitive Assessment scores. Early-stage PD patients showed weaker small-worldization of brain networks. Modular connectivity alterations were mainly observed in patients with PD-M. These findings highlight the shared and distinct brain functional network dysfunctions in PD-M and PD-N, and yield insight into the neurobiology of cognitive decline in PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Disfunção Cognitiva/patologia , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico
12.
Neuroimage ; 255: 119185, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398284

RESUMO

As characterized by repeated exposure of others' trauma, vicarious traumatization is a common negative psychological reaction during the COVID-19 pandemic and plays a crucial role in the development of general mental distress. This study aims to identify functional connectome that encodes individual variations of pandemic-related vicarious traumatization and reveal the underlying brain-vicarious traumatization mechanism in predicting general distress. The eligible subjects were 105 general university students (60 females, aged from 19 to 27 years) undergoing brain MRI scanning and baseline behavioral tests (October 2019 to January 2020), whom were re-contacted for COVID-related vicarious traumatization measurement (February to April 2020) and follow-up general distress evaluation (March to April 2021). We applied a connectome-based predictive modeling (CPM) approach to identify the functional connectome supporting vicarious traumatization based on a 268-region-parcellation assigned to network memberships. The CPM analyses showed that only the negative network model stably predicted individuals' vicarious traumatization scores (q2 = -0.18, MSE = 617, r [predicted, actual] = 0.18, p = 0.024), with the contributing functional connectivity primarily distributed in the fronto-parietal, default mode, medial frontal, salience, and motor network. Furthermore, mediation analysis revealed that vicarious traumatization mediated the influence of brain functional connectome on general distress. Importantly, our results were independent of baseline family socioeconomic status, other stressful life events and general mental health as well as age, sex and head motion. Our study is the first to provide evidence for the functional neural markers of vicarious traumatization and reveal an underlying neuropsychological pathway to predict distress symptoms in which brain functional connectome affects general distress via vicarious traumatization.


Assuntos
COVID-19 , Fadiga de Compaixão , Conectoma , Encéfalo/diagnóstico por imagem , Fadiga de Compaixão/epidemiologia , Fadiga de Compaixão/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Saúde Mental , Pandemias
13.
Front Neuroendocrinol ; 62: 100915, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862036

RESUMO

Neuroimaging studies have identified brain structural and functional alterations of type 2 diabetes mellitus (T2DM) patients; however, there is no systematic information on the relations between abnormalities in these two domains. We conducted a multimodal meta-analysis of voxel-based morphometry and regional resting-state functional MRI studies in T2DM, including fifteen structural datasets (693 patients and 684 controls) and sixteen functional datasets (378 patients and 358 controls). We found, in patients with T2DM compared to controls, conjoint decreased regional gray matter volume (GMV) and altered intrinsic activity mainly in the default mode network including bilateral superior temporal gyrus/Rolandic operculum, left middle and inferior temporal gyrus, and left supramarginal gyrus; decreased GMV alone in the limbic system; and functional abnormalities alone in the cerebellum, insula, and visual cortex. This meta-analysis identified complicated patterns of conjoint and dissociated brain alterations in T2DM patients, which may help provide new insight into the neuropathology of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
14.
Magn Reson Med ; 87(3): 1174-1183, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719061

RESUMO

PURPOSE: Lactate is a key metabolite in skeletal muscle and whole-body physiology. Its MR visibility in muscle is affected by overlapping lipid signals and fiber orientation. Double-quantum filtered (DQF) 1 H MRS selectively detects lactate at 1.3 ppm, but at ultra-high field the efficiency of slice-selective 3D-localization with conventional RF pulses is limited by bandwidth. This novel 3D-localized 1 H DQF MRS sequence uses adiabatic refocusing pulses to unambiguously detect lactate in skeletal muscle at 7 T. METHODS: Lactate double-quantum coherences were 3D-localized using slice-selective Shinnar-Le Roux optimized excitation and adiabatic refocusing pulses (similar to semi-LASER). DQF MR spectra were acquired at 7 T from lactate phantoms, meat specimens with injected lactate (exploring multiple TEs and fiber orientations), and human gastrocnemius in vivo during and after exercise (without cuff ischemia). RESULTS: Lactate was readily detected, achieving the full potential of 50% signal with a DQF, in solution. The effects of fiber orientation and TE on the lactate doublet (peak splitting, amplitude, and phase) were in good agreement with theory and literature. Exercise-induced lactate accumulation was detected with 30 s time resolution. CONCLUSION: This novel 3D-localized 1 H DQF MRS sequence can dynamically detect glycolytically generated lactate in muscle during exercise and recovery at 7 T.


Assuntos
Ácido Láctico , Músculo Esquelético , Exercício Físico , Humanos , Espectroscopia de Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas
15.
Neuropsychol Rev ; 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125651

RESUMO

Recent graph-theoretical studies of Parkinson's disease (PD) have examined alterations in the global properties of the brain structural connectome; however, reported alterations are not consistent. The present study aimed to identify the most robust global metric alterations in PD via a meta-analysis. A comprehensive literature search was conducted for all available diffusion MRI structural connectome studies that compared global graph metrics between PD patients and healthy controls (HC). Hedges' g effect sizes were calculated for each study and then pooled using a random-effects model in Comprehensive Meta-Analysis software, and the effects of potential moderator variables were tested. A total of 22 studies met the inclusion criteria for review. Of these, 16 studies reporting 10 global graph metrics (916 PD patients; 560 HC) were included in the meta-analysis. In the structural connectome of PD patients compared with HC, we found a significant decrease in clustering coefficient (g = -0.357, P = 0.005) and global efficiency (g = -0.359, P < 0.001), and a significant increase in characteristic path length (g = 0.250, P = 0.006). Dopaminergic medication, sex and age of patients were potential moderators of global brain network changes in PD. These findings provide evidence of decreased global segregation and integration of the structural connectome in PD, indicating a shift from a balanced small-world network to 'weaker small-worldization', which may provide useful markers of the pathophysiological mechanisms underlying PD.

16.
Depress Anxiety ; 39(1): 83-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793618

RESUMO

BACKGROUND: Neuroimaging studies in posttraumatic stress disorder (PTSD) have identified various alterations in white matter (WM) microstructural organization. However, it remains unclear whether these are localized to specific regions of fiber tracts, and what diagnostic value they might have. This study set out to explore the spatial profile of WM abnormalities along defined fiber tracts in PTSD. METHODS: Diffusion tensor images were obtained from 77 treatment-naive noncomorbid patients with PTSD and 76 demographically matched trauma-exposed non-PTSD (TENP) controls. Using automated fiber quantification, tract profiles of fractional anisotropy, axial diffusivity, mean diffusivity, and radial diffusivity were calculated to evaluate WM microstructural organization. Results were analyzed by pointwise comparisons, by correlation with symptom severity, and for diagnosis-by-sex interactions. Support vector machine analyses assessed the ability of tract profiles to discriminate PTSD from TENP. RESULTS: Compared to TENP, PTSD showed lower fractional anisotropy accompanied by higher radial diffusivity and mean diffusivity in the left uncinate fasciculus, and lower fractional anisotropy accompanied by higher radial diffusivity in the right anterior thalamic radiation. Tract profile alterations were correlated with symptom severity, suggesting a pathophysiological relevance. There were no significant differences in diagnosis-by-sex interaction. Tract profiles allowed individual classification of PTSD versus TENP with significant accuracy, of potential diagnostic utility. CONCLUSIONS: These findings add to the knowledge of the neuropathological basis of PTSD. WM alterations based on a tract-profile quantification approach are a potential biomarker for PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
17.
J Physiol ; 599(5): 1533-1550, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369737

RESUMO

KEY POINTS: The post-exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31 P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post-exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally. ABSTRACT: Phosphorus magnetic resonance spectroscopy (31 P MRS) of human tibialis anterior (TA) revealed a strong proximo-distal gradient in the post-exercise phosphocreatine (PCr) recovery rate constant (kPCr ), a measure of muscle oxidative capacity. The aim of this study was to investigate whether this kPCr gradient is related to O2 supply, resting phosphorylation potential, muscle fibre type, or type of exercise. Fifteen male volunteers performed continuous isometric ankle dorsiflexion at 30% maximum force until exhaustion. At multiple locations along the TA, we measured the oxidative PCr resynthesis rate (VPCr = kPCr × PCr depletion) by 31 P MRS, the oxyhaemoglobin recovery rate constant (kO2Hb ) by near infrared spectroscopy, and muscle perfusion with MR intravoxel incoherent motion imaging. The kO2Hb , kPCr , VPCr and muscle perfusion depended on measurement location (P < 0.001, P < 0.001, P = 0.032 and P = 0.003, respectively), all being greater proximally. The kO2Hb and muscle perfusion correlated with kPCr (r = 0.956 and r = 0.852, respectively) and VPCr (r = 0.932 and r = 0.985, respectively), the latter reflecting metabolic O2 consumption. Resting phosphorylation potential (PCr/inorganic phosphate) was also higher proximally (P < 0.001). The surrogate for fibre type, carnosine content measured by 1 H MRS, did not differ between distal and proximal TA (P = 0.884). Performing intermittent exercise to avoid exercise ischaemia, still led to larger kPCr proximally than distally (P = 0.013). In conclusion, the spatial kPCr gradient is strongly associated with the spatial variation in O2 supply. It cannot be explained by exercise-induced ischaemia nor by fibre type. Our findings suggest it is driven by a higher proximal intrinsic mitochondrial oxidative capacity, apparently to support contractile performance of the TA.


Assuntos
Exercício Físico , Músculo Esquelético , Trifosfato de Adenosina , Humanos , Masculino , Contração Muscular , Fosfocreatina
18.
Hum Brain Mapp ; 42(15): 5101-5112, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34322939

RESUMO

Patients with Parkinson's disease with mild cognitive impairment (PD-M) progress to dementia more frequently than those with normal cognition (PD-N), but the underlying neurobiology remains unclear. This study aimed to define the specific morphological brain network alterations in PD-M, and explore their potential diagnostic value. Twenty-four PD-M patients, 17 PD-N patients, and 29 healthy controls (HC) underwent a structural MRI scan. Similarity between interregional gray matter volume distributions was used to construct individual morphological brain networks. These were analyzed using graph theory and network-based statistics (NBS), and their relationship to neuropsychological tests was assessed. Support vector machine (SVM) was used to perform individual classification. Globally, compared with HC, PD-M showed increased local efficiency (p = .001) in their morphological networks, while PD-N showed decreased normalized path length (p = .008). Locally, similar nodal deficits were found in the rectus and lingual gyrus, and cerebellum of both PD groups relative to HC; additionally in PD-M nodal deficits involved several frontal and parietal regions, correlated with cognitive scores. NBS found that similar connections were involved in the default mode and cerebellar networks of both PD groups (to a greater extent in PD-M), while PD-M, but not PD-N, showed altered connections involving the frontoparietal network. Using connections identified by NBS, SVM allowed discrimination with high accuracy between PD-N and HC (90%), PD-M and HC (85%), and between the two PD groups (65%). These results suggest that default mode and cerebellar disruption characterizes PD, more so in PD-M, whereas frontoparietal disruption has diagnostic potential.


Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Disfunção Cognitiva/fisiopatologia , Rede de Modo Padrão/patologia , Substância Cinzenta/patologia , Rede Nervosa/patologia , Doença de Parkinson/patologia , Idoso , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem
19.
Hum Brain Mapp ; 42(10): 3156-3167, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33769638

RESUMO

Neuroimaging studies using a variety of techniques have demonstrated abnormal patterns of spontaneous brain activity in patients with essential tremor (ET). However, the findings are variable and inconsistent, hindering understanding of underlying neuropathology. We conducted a meta-analysis of whole-brain resting-state functional neuroimaging studies in ET compared to healthy controls (HC), using anisotropic effect-size seed-based d mapping, to identify the most consistent brain activity alterations and their relation to clinical features. After systematic literature search, we included 13 studies reporting 14 comparisons, describing 286 ET patients and 254 HC. Subgroup analyses were conducted considering medication status, head tremor status, and methodological factors. Brain activity in ET is altered not only in the cerebellum and cerebral motor cortex, but also in nonmotor cortical regions including prefrontal cortex and insula. Most of the results remained unchanged in subgroup analyses of patients with head tremor, medication-naive patients, studies with statistical threshold correction, and the large subgroup of studies using functional magnetic resonance imaging. These findings not only show consistent and robust abnormalities in specific brain regions but also provide new information on the biology of patient heterogeneity, and thus help to elucidate the pathophysiology of ET.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Conectoma , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Descanso
20.
Hum Brain Mapp ; 42(2): 398-411, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058379

RESUMO

This study explores the topological properties of brain gray matter (GM) networks in patients with paroxysmal kinesigenic dyskinesia (PKD) and asks whether GM network features have potential diagnostic value. We used 3D T1-weighted magnetic resonance imaging and graph theoretical approaches to investigate the topological organization of GM morphological networks in 87 PKD patients and 115 age- and sex-matched healthy controls. We applied a support vector machine to GM morphological network matrices to classify PKD patients versus healthy controls. Compared with the HC group, the GM morphological networks of PKD patients showed significant abnormalities at the global level, including an increase in characteristic path length (Lp) and decreases in local efficiency (Eloc ), clustering coefficient (Cp), normalized clustering coefficient (γ), and small-worldness (σ). The decrease in Cp was significantly correlated with disease duration and age of onset. The GM morphological networks of PKD patients also showed significant changes in nodal topological characteristics, mainly in the basal ganglia-thalamus circuitry, default-mode network and central executive network. Finally, we used the GM morphological network matrices to classify individuals as PKD patients versus healthy controls, achieving 87.8% accuracy. Overall, this study demonstrated disruption of GM morphological networks in PKD, which might extend our understanding of the pathophysiology of PKD; further, GM morphological network matrices might have the potential to serve as network neuroimaging biomarkers for the diagnosis of PKD.


Assuntos
Encéfalo/diagnóstico por imagem , Distonia/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/fisiopatologia , Criança , Distonia/fisiopatologia , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa