Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(10): 3583-3595, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018343

RESUMO

KEY MESSAGE: We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
2.
BMC Genomics ; 19(1): 559, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064354

RESUMO

BACKGROUND: Multi-parent advanced generation intercross (MAGIC) populations are a newly established tool to dissect quantitative traits. We developed the high resolution MAGIC wheat population WM-800, consisting of 910 F4:6 lines derived from intercrossing eight recently released European winter wheat cultivars. RESULTS: Genotyping WM-800 with 7849 SNPs revealed a low mean genetic similarity of 59.7% between MAGIC lines. WM-800 harbours distinct genomic regions exposed to segregation distortion. These are mainly located on chromosomes 2 to 6 of the wheat B genome where founder specific DNA segments were positively or negatively selected. This suggests adaptive selection of individual founder alleles during population development. The application of a genome-wide association study identified 14 quantitative trait loci (QTL) controlling plant height in WM-800, including the known semi-dwarf genes Rht-B1 and Rht-D1 and a potentially novel QTL on chromosome 5A. Additionally, epistatic effects controlled plant height. For example, two loci on chromosomes 2B and 7B gave rise to an additive epistatic effect of 13.7 cm. CONCLUSION: The present study demonstrates that plant height in the MAGIC-WHEAT population WM-800 is mainly determined by large-effect QTL and di-genic epistatic interactions. As a proof of concept, our study confirms that WM-800 is a valuable tool to dissect the genetic architecture of important agronomic traits.


Assuntos
Epistasia Genética , Regulação da Expressão Gênica de Plantas , Triticum/genética , Cruzamentos Genéticos , Efeito Fundador , Frequência do Gene , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/anatomia & histologia
3.
J Appl Genet ; 56(3): 277-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25924791

RESUMO

Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.


Assuntos
Mapeamento Cromossômico , Germinação/genética , Locos de Características Quantitativas , Triticum/genética , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Análise de Sequência de DNA
4.
J Appl Genet ; 54(3): 259-63, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794194

RESUMO

Fungal diseases of wheat, including powdery mildew, cause significant crop, yield and quality losses throughout the world. Knowledge of the genetic basis of powdery mildew resistance will greatly support future efforts to develop and cultivate resistant cultivars. Studies were conducted on cultivated emmer-derived wheat line K2 to identify genes involved in powdery mildew resistance at the seedling and adult plant growth stages using a BC(1) doubled haploid population derived from a cross between K2 and susceptible cultivar Audace. A single gene was located distal to microsatellite marker Xgwm294 on the long arm of chromosome 2A. Quantitative trait loci (QTL) analysis indicated that the gene was also effective at the adult plant stage, explaining up to 79.0 % of the variation in the progeny. Comparison of genetic maps indicated that the resistance gene in K2 was different from Pm4, the only other formally named resistance gene located on chromosome 2AL, and PmHNK54, a gene derived from Chinese germplasm. The new gene was designated Pm50.


Assuntos
Ascomicetos , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Triticum/imunologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Cruzamentos Genéticos , Deleção de Genes , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Haploidia , Repetições de Microssatélites/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa