Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1290696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900283

RESUMO

The approval of immunotherapy for stage II-IV melanoma has underscored the need for improved immune-based predictive and prognostic biomarkers. For resectable stage II-III patients, adjuvant immunotherapy has proven clinical benefit, yet many patients experience significant adverse events and may not require therapy. In the metastatic setting, single agent immunotherapy cures many patients but, in some cases, more intensive combination therapies against specific molecular targets are required. Therefore, the establishment of additional biomarkers to determine a patient's disease outcome (i.e., prognostic) or response to treatment (i.e., predictive) is of utmost importance. Multiple methods ranging from gene expression profiling of bulk tissue, to spatial transcriptomics of single cells and artificial intelligence-based image analysis have been utilized to better characterize the immune microenvironment in melanoma to provide novel predictive and prognostic biomarkers. In this review, we will highlight the different techniques currently under investigation for the detection of prognostic and predictive immune biomarkers in melanoma.

2.
Front Cardiovasc Med ; 8: 687783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179146

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Angiotensin converting enzyme 2 (ACE2) receptor present on the cell surface to enter cells. Angiotensin converting enzyme 2 is present in many cell types including endothelial cells, where it functions to protect against oxidative damage. There is growing evidence to suggest that coronavirus disease (COVID-19) patients exhibit a wide range of post-recovery symptoms and shows signs related to cardiovascular and specifically, endothelial damage. We hypothesized that these vascular symptoms might be associated with disrupted endothelial barrier integrity. This was investigated in vitro using endothelial cell culture and recombinant SARS-CoV-2 spike protein S1 Receptor-Binding Domain (Spike). Mouse brain microvascular endothelial cells from normal (C57BL/6 mice) and diabetic (db/db) mice were used. An endothelial transwell permeability assay revealed increased permeability in diabetic cells as well as after Spike treatment. The expression of VE-Cadherin, an endothelial adherens junction protein, JAM-A, a tight junctional protein, Connexin-43, a gap junctional protein, and PECAM-1, were all decreased significantly after Spike treatment in control and to a greater extent, in diabetic cells. In control cells, Spike treatment increased association of endothelial junctional proteins with Rab5a, a mediator of the endocytic trafficking compartment. In cerebral arteries isolated from control and diabetic animals, Spike protein had a greater effect in downregulating expression of endothelial junctional proteins in arteries from diabetic animals than from control animals. In conclusion, these experiments reveal that Spike-induced degradation of endothelial junctional proteins affects endothelial barrier function and is the likely cause of vascular damage observed in COVID-19 affected individuals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa