Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 264(5165): 1560-3, 1994 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-17769597

RESUMO

Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10(13) protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging.

2.
Phys Rev Lett ; 101(23): 235005, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113564

RESUMO

The resistive wall mode is experimentally identified and characterized in a line-tied, cylindrical screw pinch when the edge safety factor is less than a critical value. Different wall materials have been used to change the wall time and show that the growth rates for the RWM scale with wall time and safety factor as expected by theory. The addition of a ferritic wall material outside the conducting shell leads to growth rates larger than the observed RWM and larger than theoretical predictions for the ferritic wall mode.

3.
Phys Rev Lett ; 98(16): 164503, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501423

RESUMO

The nature of Ohm's law is examined in a turbulent flow of liquid sodium. A magnetic field is applied to the flowing sodium, and the resulting magnetic field is measured. The mean velocity field of the sodium is also measured in an identical-scale water model of the experiment. These two fields are used to determine the terms in Ohm's law, indicating the presence of currents driven by a turbulent electromotive force. These currents result in a diamagnetic effect, generating magnetic field in opposition to the dominant fields of the experiment. The magnitude of the fluctuation-driven magnetic field is comparable to that of the field induced by the sodium's mean flow.

4.
Phys Rev Lett ; 97(4): 044503, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907577

RESUMO

The magnetic field measured in the Madison dynamo experiment shows intermittent periods of growth when an axial magnetic field is applied. The geometry of the intermittent field is consistent with the fastest-growing magnetic eigenmode predicted by kinematic dynamo theory using a laminar model of the mean flow. Though the eigenmodes of the mean flow are decaying, it is postulated that turbulent fluctuations of the velocity field change the flow geometry such that the eigenmode growth rate is temporarily positive. Therefore, it is expected that a characteristic of the onset of a turbulent dynamo is magnetic intermittency.

5.
Phys Rev Lett ; 96(5): 055002, 2006 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-16486942

RESUMO

An axisymmetric magnetic field is applied to a spherical, turbulent flow of liquid sodium. An induced magnetic dipole moment is measured which cannot be generated by the interaction of the axisymmetric mean flow with the applied field, indicating the presence of a turbulent electromotive force. It is shown that the induced dipole moment should vanish for any axisymmetric laminar flow. Also observed is the production of toroidal magnetic field from applied poloidal magnetic field (the omega effect). Its potential role in the production of the induced dipole is discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa