Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 31(3): 1786-1806, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33230531

RESUMO

The molecular repertoire of the "Ca2+-signaling toolkit" supports the specific kinetic requirements of Ca2+-dependent processes in different neuronal types. A well-known example is the unique expression pattern of calcium-binding proteins, such as parvalbumin, calbindin, and calretinin. These cytosolic Ca2+-buffers control presynaptic and somatodendritic processes in a cell-type-specific manner and have been used as neurochemical markers of GABAergic interneuron types for decades. Surprisingly, to date no typifying calcium-binding proteins have been found in CB1 cannabinoid receptor/cholecystokinin (CB1/CCK)-positive interneurons that represent a large population of GABAergic cells in cortical circuits. Because CB1/CCK-positive interneurons display disparate presynaptic and somatodendritic Ca2+-transients compared with other interneurons, we tested the hypothesis that they express alternative calcium-binding proteins. By in silico data mining in mouse single-cell RNA-seq databases, we identified high expression of Necab1 and Necab2 genes encoding N-terminal EF-hand calcium-binding proteins 1 and 2, respectively, in CB1/CCK-positive interneurons. Fluorescent in situ hybridization and immunostaining revealed cell-type-specific distribution of NECAB1 and NECAB2 throughout the isocortex, hippocampal formation, and basolateral amygdala complex. Combination of patch-clamp electrophysiology, confocal, and STORM super-resolution microscopy uncovered subcellular nanoscale differences indicating functional division of labor between the two calcium-binding proteins. These findings highlight NECAB1 and NECAB2 as predominant calcium-binding proteins in CB1/CCK-positive interneurons.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Olho/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Animais , Colecistocinina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/metabolismo
2.
J Neurosci ; 35(27): 10039-57, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26157003

RESUMO

Persistent CB1 cannabinoid receptor activity limits neurotransmitter release at various synapses throughout the brain. However, it is not fully understood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse-specific calibration of neurotransmitter release probability. To address this question at perisomatic and dendritic GABAergic synapses in the mouse hippocampus, we used a combination of paired whole-cell patch-clamp recording, liquid chromatography/tandem mass spectrometry, stochastic optical reconstruction microscopy super-resolution imaging, and immunogold electron microscopy. Unexpectedly, application of the CB1 antagonist and inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide], but not the neutral antagonist NESS0327 [8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-5,6-dihydro-4H-benzo[2,3]cyclohepta[2,4-b]pyrazole-3-carboxamine], significantly increased synaptic transmission between CB1-positive perisomatic interneurons and CA1 pyramidal neurons. JZL184 (4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate), a selective inhibitor of monoacylglycerol lipase (MGL), the presynaptic degrading enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), elicited a robust increase in 2-AG levels and concomitantly decreased GABAergic transmission. In contrast, inhibition of fatty acid amide hydrolase (FAAH) by PF3845 (N-pyridin-3-yl-4-[[3-[5-(trifluoromethyl)pyridin-2-yl]oxyphenyl]methyl]piperidine-1-carboxamide) elevated endocannabinoid/endovanilloid anandamide levels but did not change GABAergic synaptic activity. However, FAAH inhibitors attenuated tonic 2-AG increase and also decreased its synaptic effects. This antagonistic interaction required the activation of the transient receptor potential vanilloid receptor TRPV1, which was concentrated on postsynaptic intracellular membrane cisternae at perisomatic GABAergic symmetrical synapses. Interestingly, neither AM251, JZL184, nor PF3845 affected CB1-positive dendritic interneuron synapses. Together, these findings are consistent with the possibility that constitutively active CB1 receptors substantially influence perisomatic GABA release probability and indicate that the synaptic effects of tonic 2-AG release are tightly controlled by presynaptic MGL activity and also by postsynaptic endovanilloid signaling and FAAH activity. SIGNIFICANCE STATEMENT: Tonic cannabinoid signaling plays a critical role in the regulation of synaptic transmission. However, the mechanistic details of how persistent CB1 cannabinoid receptor activity inhibits neurotransmitter release have remained elusive. Therefore, electrophysiological recordings, lipid measurements, and super-resolution imaging were combined to elucidate those signaling molecules and mechanisms that underlie tonic cannabinoid signaling. The findings indicate that constitutive CB1 activity has pivotal function in the tonic control of hippocampal GABA release. Moreover, the endocannabinoid 2-arachidonoylglycerol (2-AG) is continuously generated postsynaptically, but its synaptic effect is regulated strictly by presynaptic monoacylglycerol lipase activity. Finally, anandamide signaling antagonizes tonic 2-AG signaling via activation of postsynaptic transient receptor potential vanilloid TRPV1 receptors. This unexpected mechanistic diversity may be necessary to fine-tune GABA release probability under various physiological and pathophysiological conditions.


Assuntos
Endocanabinoides/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Glicerídeos/farmacologia , Hipocampo/citologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Piperidinas/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Canais de Cátion TRPV/genética
3.
J Nanobiotechnology ; 14(1): 55, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27388915

RESUMO

BACKGROUND: Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-type-specific distribution of fluorescent polystyrene nanoparticles with chemically distinct surface compositions. METHODS: Fluorescent polystyrene nanoparticles with 50-90 nm diameter and with carboxylated- or polyethylene glycol-modified (PEGylated) surfaces were delivered into adult male and pregnant female mice with a single intravenous injection. The precise anatomical distribution of the particles was investigated by confocal microscopy after a short-term (5 min) or long-term (4 days) distribution period. In order to distinguish particle-fluorescence from tissue autofluorescence and to enhance the detection-efficiency, fluorescence spectral detection was applied during image acquisition and a post hoc full spectrum analysis was performed on the final images. RESULTS: Spectral imaging fluorescence microscopy allowed distinguishing particle-fluorescence from tissue-fluorescence in all examined organs (brain, kidney, liver, spleen and placenta) in NP-treated slice preparations. In short-time distribution following in vivo NP-administration, all organs contained carboxylated-nanoparticles, while PEGylated-nanoparticles were not detected in the brain and the placenta. Importantly, nanoparticles were not found in any embryonic tissues or in the barrier-protected brain parenchyma. Four days after the administration, particles were completely cleared from both the brain and the placenta, while PEGylated-, but not carboxylated-nanoparticles, were stuck in the kidney glomerular interstitium. In the spleen, macrophages accumulated large amount of carboxylated and PEGylated nanoparticles, with detectable redistribution from the marginal zone to the white pulp during the 4-day survival period. CONCLUSIONS: Spectral imaging fluorescence microscopy allowed detecting the tissue- and cell-type-specific accumulation and barrier-penetration of polystyrene nanoparticles with equal size but chemically distinct surfaces. The data revealed that polystyrene nanoparticles are retained by the reticuloendothelial system regardless of surface functionalization. Taken together with the increasing production and use of nanoparticles, the results highlight the necessity of long-term distribution studies to estimate the potential health-risks implanted by tissue-specific nanoparticle accumulation and clearance.


Assuntos
Microscopia de Fluorescência/métodos , Nanopartículas/metabolismo , Imagem Óptica/métodos , Poliestirenos/farmacocinética , Animais , Encéfalo/metabolismo , Compartimento Celular/fisiologia , Embrião de Mamíferos , Feminino , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Microscopia de Fluorescência/instrumentação , Nanopartículas/química , Imagem Óptica/instrumentação , Especificidade de Órgãos , Tamanho da Partícula , Placenta/metabolismo , Polietilenoglicóis/química , Poliestirenos/química , Gravidez , Baço/metabolismo , Distribuição Tecidual
4.
Sci Adv ; 10(22): eado0077, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809980

RESUMO

While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.


Assuntos
Receptor CB1 de Canabinoide , Transdução de Sinais , Sinapses , Transmissão Sináptica , Animais , Transmissão Sináptica/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Sinapses/metabolismo , Terminações Pré-Sinápticas/metabolismo , Camundongos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Dronabinol/farmacologia
5.
Nanoscale ; 7(9): 4199-210, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25673096

RESUMO

Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of "aged" NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with "identical" NPs.


Assuntos
Lipopolissacarídeos/química , Nanopartículas/química , Poliestirenos/química , Adsorção , Animais , Barreira Hematoencefálica/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Tamanho da Partícula , Propriedades de Superfície
6.
Nanotoxicology ; 8 Suppl 1: 138-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24344716

RESUMO

Engineered amorphous silica nanoparticles (SiO2 NPs), due to simple and low cost production, are increasingly used in commercial products and produced on an industrial scale. Despite the potential benefits, there is a concern that exposure to certain types of SiO2 NPs may lead to adverse health effects. As some NPs can cross the blood--brain barrier and may, in addition, reach the central nervous system through the nasal epithelium, this study addresses the responses of different neural tissue-type cells including neural stem cells, neurons, astrocytes and microglia cells to increasing doses of 50 nm fluorescent core/shell SiO2 NPs with different [-NH2, -SH and polyvinylpyrrolidone (PVP)] surface chemistry. The SiO2 NPs are characterized using a variety of physicochemical methods. Assays of cytotoxicity and cellular metabolism indicates that SiO2 NPs cause cell death only at high particle doses, except PVP-coated SiO2 NPs which do not harm cells even at very high concentrations. All SiO2 NPs, except those coated with PVP, form large agglomerates in physiological solutions and adsorb a variety of proteins. Except PVP-NPs, all SiO2 NPs adhere strongly to cell surfaces, but internalization differs depending on neural cell type. Neural stem cells and astrocytes internalize plain SiO2, SiO2-NH2 and SiO2-SH NPs, while neurons do not take up any NPs. The data indicates that the PVP coat, by lowering the particle-biomolecular component interactions, reduces the biological effects of SiO2 NPs on the investigated neural cells.


Assuntos
Corantes Fluorescentes/química , Nanopartículas , Células-Tronco Neurais/citologia , Dióxido de Silício/química , Linhagem Celular , Humanos , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa