Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 198(10): 4074-4085, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28373581

RESUMO

Lymphocyte transendothelial migration (TEM) is critically dependent on intraendothelial signaling triggered by adhesion to ICAM-1. Here we show that endothelial MAPKs ERK, p38, and JNK mediate diapedesis-related and diapedesis-unrelated functions of ICAM-1 in cerebral and dermal microvascular endothelial cells (MVECs). All three MAPKs were activated by ICAM-1 engagement, either through lymphocyte adhesion or Ab-mediated clustering. MAPKs were involved in ICAM-1-dependent expression of TNF-α in cerebral and dermal MVECs, and CXCL8, CCL3, CCL4, VCAM-1, and cyclooxygenase 2 (COX-2) in cerebral MVECs. Endothelial JNK and to a much lesser degree p38 were the principal MAPKs involved in facilitating diapedesis of CD4+ lymphocytes across both types of MVECs, whereas ERK was additionally required for TEM across dermal MVECs. JNK activity was critical for ICAM-1-induced F-actin rearrangements. Furthermore, activation of endothelial ICAM-1/JNK led to phosphorylation of paxillin, its association with VE-cadherin, and internalization of the latter. Importantly ICAM-1-induced phosphorylation of paxillin was required for lymphocyte TEM and converged functionally with VE-cadherin phosphorylation. Taken together we conclude that during lymphocyte TEM, ICAM-1 signaling diverges into pathways regulating lymphocyte diapedesis, and other pathways modulating gene expression thereby contributing to the long-term inflammatory response of the endothelium.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Encéfalo/irrigação sanguínea , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Movimento Celular , Células Cultivadas , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL4/genética , Quimiocina CCL4/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Derme/irrigação sanguínea , Células Endoteliais/imunologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Ativação Enzimática , Humanos , Inflamação/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Sistema de Sinalização das MAP Quinases , Microvasos , Paxilina/metabolismo , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
2.
Proc Natl Acad Sci U S A ; 113(26): 7213-8, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298369

RESUMO

Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Barreira Hematorretiniana/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Animais , Compostos de Bifenilo/sangue , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/farmacologia , Masculino , Permeabilidade , Pirimidinonas/sangue , Pirimidinonas/farmacocinética , Pirimidinonas/farmacologia , Coelhos , Ratos Endogâmicos BN , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Haematologica ; 99(1): 185-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23872307

RESUMO

Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated, receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumor necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumor necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, the findings of this study support a novel function for factor Xa as an endogenous, receptor-associated protein-sensitive, protease-activated receptor 2-dependent regulator of myeloid cell pro-inflammatory cytokine production.


Assuntos
Citocinas/biossíntese , Fator Xa/metabolismo , Mediadores da Inflamação/metabolismo , Células Mieloides/metabolismo , Receptor PAR-2/metabolismo , Transdução de Sinais , Androstadienos/farmacologia , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fator Xa/química , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptor PAR-2/genética , Transdução de Sinais/efeitos dos fármacos , Wortmanina
4.
Front Neurosci ; 9: 156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999807

RESUMO

The chemical and electrical microenvironment of neurons within the central nervous system is protected and segregated from the circulation by the vascular blood-brain barrier. This barrier operates on the level of endothelial cells and includes regulatory crosstalk with neighboring pericytes, astrocytes, and neurons. Within this neurovascular unit, the endothelial cells form a formidable, highly regulated barrier through the presence of inter-endothelial tight junctions, the absence of fenestrations, and the almost complete absence of fluid-phase transcytosis. The potent psychostimulant drug methamphetamine transiently opens the vascular blood-brain barrier through either or both the modulation of inter-endothelial junctions and the induction of fluid-phase transcytosis. Direct action of methamphetamine on the vascular endothelium induces acute opening of the blood-brain barrier. In addition, striatal effects of methamphetamine and resultant neuroinflammatory signaling can indirectly lead to chronic dysfunction of the blood-brain barrier. Breakdown of the blood-brain barrier may exacerbate the neuronal damage that occurs during methamphetamine abuse. However, this process also constitutes a rare example of agonist-induced breakdown of the blood-brain barrier and the adjunctive use of methamphetamine may present an opportunity to enhance delivery of chemotherapeutic agents to the underlying neural tissue.

5.
Neuropharmacology ; 65: 74-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22960442

RESUMO

Methamphetamine's (METH) neurotoxicity is thought to be in part due to its ability to induce blood-brain barrier (BBB) dysfunction. Here, we investigated the effect of METH on barrier properties of cultured rat primary brain microvascular endothelial cells (BMVECs). Transendothelial flux doubled in response to METH, irrespective of the size of tracer used. At the same time, transendothelial electrical resistance was unchanged as was the ultrastructural appearance of inter-endothelial junctions and the distribution of key junction proteins, suggesting that METH promoted vesicular but not junctional transport. Indeed, METH significantly increased uptake of horseradish peroxidase into vesicular structures. METH also enhanced transendothelial migration of lymphocytes indicating that the endothelial barrier against both molecules and cells was compromised. Barrier breakdown was only observed in response to METH at low micromolar concentrations, with enhanced vesicular uptake peaking at 1 µM METH. The BMVEC response to METH also involved rapid activation of endothelial nitric oxide synthase and its inhibition abrogated METH-induced permeability and lymphocyte migration, indicating that nitric oxide was a key mediator of BBB disruption in response to METH. This study underlines the key role of nitric oxide in BBB function and describes a novel mechanism of drug-induced fluid-phase transcytosis at the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Metanfetamina/farmacologia , Óxido Nítrico/biossíntese , Vesículas Transportadoras/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/citologia , Feminino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/agonistas , Óxido Nítrico/antagonistas & inibidores , Ratos , Ratos Endogâmicos Lew , Vesículas Transportadoras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa