Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 22(12): 2098-2101, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798271

RESUMO

A mechanism of nucleoside triphosphorylation would have been critical in an evolving "RNA world" to provide high-energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. Previous reports have demonstrated that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under prebiotically-relevant conditions, but their reaction rates were unknown and the influence of reaction conditions not well-characterized. Here we established a sensitive assay that allowed for the determination of second-order rate constants for all four rNTPs, ranging from 1.7×10-6 to 6.5×10-6  M-1 s-1 . The ATP reaction shows a linear dependence on pH and Mg2+ , and an enthalpy of activation of 88±4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Ácidos Fosforosos/metabolismo , RNA Catalítico/metabolismo , RNA/biossíntese , Ribonucleotídeos/metabolismo , Proteínas Virais/metabolismo , Estrutura Molecular , Ácidos Fosforosos/química , RNA/química , Ribonucleotídeos/química
2.
J Org Chem ; 81(15): 6816-9, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27387821

RESUMO

We investigate the effect of buffer identity, ionic strength, pH, and organic cosolvents on the rate of strain-promoted azide-alkyne cycloaddition with the widely used DIBAC cyclooctyne. The rate of reaction between DIBAC and a hydrophilic azide is highly tolerant to changes in buffer conditions but is impacted by organic cosolvents. Thus, bioconjugation reactions using DIBAC can be carried out in the buffer that is most compatible with the biomolecules being labeled, but the use of organic cosolvents should be carefully considered.

3.
Anal Chem ; 85(20): 9916-23, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24033257

RESUMO

Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Ligantes , Esteroides/metabolismo
4.
Anal Chem ; 84(14): 6104-9, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22715870

RESUMO

Here we report an aptamer-based analogue of the widely used sandwich enzyme-linked immunosorbent assay (ELISA). This assay utilizes the cocaine split aptamer, which is comprised of two DNA strands that only assemble in the presence of the target small molecule. One split aptamer fragment is immobilized on a microplate, then a test sample is added containing the second split aptamer fragment. If cocaine is present in the test sample, it directs assembly of the split aptamer and promotes a chemical ligation between azide and cyclooctyne functional groups appended to the termini of the split aptamer fragments. Ligation results in covalent attachment of biotin to the microplate and provides a colorimetric output upon conjugation to streptavidin-horseradish peroxidase. Using this assay, we demonstrate detection of cocaine at concentrations of 100 nM-100 µM in buffer and 1-100 µM human blood serum. The detection limit of 1 µM in serum represents an improvement of two orders of magnitude over previously reported split aptamer-based sensors and highlights the utility of covalently trapping split aptamer assembly events.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Cocaína/análise , Ensaio de Imunoadsorção Enzimática/métodos , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Soluções Tampão , Cocaína/sangue , Cocaína/metabolismo , Humanos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa