Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(11): 6086-6099, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31996888

RESUMO

A novel relationship between noble metal phase particles and fission gas bubble production in used nuclear fuel is described. The majority of Te atoms within noble metal phase undergo radioactive decay to form stable Xe within a few hours after particle formation. This results in the production of clusters of Xe atoms contained within the solid metal matrix exhibiting an equivalent gas bubble pressure approaching 1 GPa. These high pressure bubbles are stabilized by the UO2 within the bulk of the fuel. However, when these bubbles form near the fuel/cladding interface, in combination with local and temporal damage caused by fission recoil, they are capable of overcoming the fracture strength of the UO2 and rupturing catastrophically. The force of the resulting bubble rupture is sufficient to eject noble metal phase particles several microns into the cladding. This proposed mechanism explains the observance of noble metal phase in cladding and is consistent with a host of morphological features found near the fuel/cladding interface.

2.
J Phys Chem A ; 119(44): 10767-83, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26381466

RESUMO

Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major role in the lifecycle of atmospheric OA.


Assuntos
Aerossóis/química , Carbono/química , Compostos Orgânicos/química , Cinética , Oxirredução , Tamanho da Partícula , Transição de Fase
3.
J Phys Chem A ; 118(23): 4106-19, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24840787

RESUMO

The kinetics and products of the heterogeneous OH-initiated oxidation of squalene (C30H50, a branched alkene with 6 C═C double bonds) particles are measured. These results are compared to previous measurements of the OH-initiated oxidation of linoleic acid (C18H32O2, a linear carboxylic acid with 2 C═C double bonds) particles to understand how molecular structure and chemical functionality influence reaction rates and mechanisms. In a 10% mixture of O2 in N2 in the flow reactor, the effective uptake coefficients (γeff) for squalene and linoleic acid are larger than unity, providing clear evidence for particle-phase secondary chain chemistry. γeff for squalene is 2.34 ± 0.07, which is smaller than γeff for linoleic acid (3.75 ± 0.18) despite the larger number of C═C double bonds in squalene. γeff for squalene increases with [O2] in the reactor, whereas γeff for linoleic acid decreases with increasing [O2]. This suggests that the chain cycling mechanism in these two systems is different since O2 promotes chain propagation in the OH + squalene reaction but promotes chain termination in the OH + linoleic acid reaction. Elemental analysis of squalene aerosol shows that an average of 1.06 ± 0.12 O atoms are added per reactive loss of squalene prior to the onset of particle volatilization. O2 promotes particle volatilization in the OH + squalene reaction, suggesting that fragmentation reactions are important when O2 is present in the OH oxidation of branched unsaturated organic aerosol. In contrast, O2 does not influence the rate of particle volatilization in the OH + linoleic acid reaction. This indicates that O2 does not alter the relative importance of fragmentation reactions in the OH oxidation of linear unsaturated organic aerosol.

4.
Phys Chem Chem Phys ; 15(42): 18649-63, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24080859

RESUMO

The heterogeneous reaction of OH radicals with sub-micron unsaturated fatty acid particles in the presence of H2O2 and O2 is studied to explore how surface OH addition reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. In the presence of 20.7 ppm [H2O2] in a 10% mixture of O2 in N2, the effective uptake coefficients of oleic acid, linoleic acid and linolenic acid are found to be 1.72 ± 0.08, 3.75 ± 0.18 and 5.73 ± 0.14, respectively. These effective uptake coefficients are larger than unity, providing clear evidence for particle-phase secondary chain chemistry. The effective uptake coefficient increases linearly with the number of C=C double bonds in the unsaturated fatty acid molecule. Elemental composition analysis reveals that there is an addition of, on average, 0.57 ± 0.02, 0.61 ± 0.01 and 0.73 ± 0.04 O atoms per reactive loss of oleic acid, linoleic acid and linolenic acid, respectively, which suggests that OH addition to the C=C double bond is not the sole reaction pathway that consumes the molecular species. These results suggest the potential presence of secondary reactions that consume the unsaturated fatty acid molecular species without increasing the particulate oxygen content. As the unsaturated fatty acid particles become more oxygenated, volatilization also becomes significant. The magnitudes of the effective uptake coefficients are found to be dependent on the concentrations of OH, O2 and H2O2 in the flow reactor. A plausible reaction mechanism is presented to show how surface OH addition reactions initiate chain reactions that rapidly transform an unsaturated organic particle's physicochemical properties.

5.
Phys Chem Chem Phys ; 14(4): 1468-79, 2012 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-22158973

RESUMO

The heterogeneous reactions of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reaction products evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new (BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during the reaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products. In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could play important roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.


Assuntos
Aerossóis/química , Interpretação Estatística de Dados , Ácidos Decanoicos/química , Radical Hidroxila/química , Modelos Químicos , Esqualeno/química , Cinética , Oxirredução
6.
J Phys Chem A ; 116(24): 6358-65, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22483038

RESUMO

The oxidative evolution ("aging") of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicrometer particles composed of model oxidized organics-1,2,3,4-butanetetracarboxylic acid (C(8)H(10)O(8)), citric acid (C(6)H(8)O(7)), tartaric acid (C(4)H(6)O(6)), and Suwannee River fulvic acid-were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

7.
Environ Sci Technol ; 44(18): 7005-10, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20707414

RESUMO

The heterogeneous oxidation of pure erythritol (C(4)H(10)O(4)) and levoglucosan (C(6)H(10)O(5)) particles was studied in order to evaluate the effects of atmospheric aging on the mass and chemical composition of atmospheric organic aerosol. In contrast to what is generally observed for the heterogeneous oxidation of reduced organics, substantial volatilization is observed in both systems. However, the ratio of the decrease in particle mass to the decrease in the concentration of the parent species is about three times higher for erythritol than for levoglucosan, indicating that details of chemical structure (such as carbon number, cyclic moieties, and oxygen-containing functional groups) play a governing role in the importance of volatilization reactions. The kinetics of the reaction indicate that while both compounds react at approximately the same rate, reactions of their oxidation products appear to be slowed substantially. Estimates of volatilities of organic species based on elemental composition measurements suggest that the heterogeneous oxidation of oxygenated organics may be an important loss mechanism of organic aerosol.


Assuntos
Aerossóis/química , Eritritol/química , Glucose/análogos & derivados , Atmosfera , Glucose/química , Cinética , Oxidantes/química , Oxirredução
8.
Faraday Discuss ; 165: 181-202, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601003

RESUMO

Measurements of ambient organic aerosol indicate that a substantial fraction is highly oxidized and low in volatility, but this fraction is generally not reproduced well in either laboratory studies or models. Here we describe a new approach for constraining the viable precursors and formation pathways of highly oxidized organic aerosol, by starting with the oxidized product and considering the possible reverse reactions, using a set of simple chemical rules. The focus of this work is low-volatility oxidized organic aerosol (LV-OOA), determined from factor analysis of aerosol mass spectrometer data. The elemental composition and volatility of the aerosol enable the determination of its position in a three-dimensional chemical space (defined by H/C, O/C, and carbon number) and thus its average chemical formula. Consideration of possible back-reactions then defines the movement taken through this chemical space, constraining potential reaction pathways and precursors. This approach is taken for two highly oxidized aerosol types, an average of LV-OOA factors from ten field campaigns (average formula C10.5H13.4O7.3), and extremely oxidized LV-OOA (from Mexico City, average formula C10H12.1O8.4). Results suggest that potential formation pathways include functionalization reactions that add multiple functional groups per oxidation step, oligomerization of highly oxidized precursors, and, in some cases, fragmentation reactions that involve the loss of small, reduced fragments.


Assuntos
Aerossóis/química , Compostos Orgânicos/química , Oxirredução
9.
J Phys Chem Lett ; 2(11): 1295-300, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26295424

RESUMO

The immense complexity inherent in the formation of secondary organic aerosol (SOA)-due primarily to the large number of oxidation steps and reaction pathways involved-has limited the detailed understanding of its underlying chemistry. As a means of simplifying such complexity, here we demonstrate the formation of SOA through the photolysis of gas-phase alkyl iodides, which generates organic peroxy radicals of known structure. In contrast to standard OH-initiated oxidation experiments, photolytically initiated oxidation forms a limited number of products via a single reactive step. As is typical for SOA, the yields of aerosol generated from the photolysis of alkyl iodides depend on aerosol loading, indicating the semivolatile nature of the particulate species. However, the aerosol was observed to be higher in volatility and less oxidized than in previous multigenerational studies of alkane oxidation, suggesting that additional oxidative steps are necessary to produce oxidized semivolatile material in the atmosphere. Despite the relative simplicity of this chemical system, the SOA mass spectra are still quite complex, underscoring the wide range of products present in SOA.

10.
Nat Chem ; 3(2): 133-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258386

RESUMO

A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here, we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state, a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of the average carbon oxidation state, using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number.


Assuntos
Aerossóis/química , Atmosfera/química , Carbono/química , Compostos Orgânicos/química , Poluentes Atmosféricos/química , Humanos , Oxirredução
11.
Phys Chem Chem Phys ; 11(36): 8005-14, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19727507

RESUMO

The competition between the addition of polar, oxygen-containing functional groups (functionalization) and the cleavage of C-C bonds (fragmentation) has a governing influence on the change in volatility of organic species upon atmospheric oxidation, and hence on the loading of tropospheric organic aerosol. However the relative importance of these two channels is generally poorly constrained for oxidized organics. Here we determine fragmentation-functionalization branching ratios for organics spanning a range of oxidation levels, using the heterogeneous oxidation of squalane (C30H62) as a model system. Squalane particles are exposed to high concentrations of OH in a flow reactor, and measurements of particle mass and elemental ratios enable the determination of absolute elemental composition (number of oxygen, carbon, and hydrogen atoms) of the oxidized particles. At low OH exposure, the oxygen content of the organics increases, indicating that functionalization dominates, whereas for more oxidized organics the amount of carbon in the particles decreases, indicating the increasing importance of fragmentation processes. Once the organics are moderately oxidized (O/C approximately 0.4), fragmentation completely dominates, and the increase in O/C ratio upon further oxidation is due to the loss of carbon rather than the addition of oxygen. These results suggest that fragmentation reactions may be key steps in the formation and evolution of oxygenated organic aerosol (OOA).


Assuntos
Aerossóis/química , Atmosfera/análise , Atmosfera/química , Modelos Químicos , Compostos Orgânicos/química , Oxigênio/química , Material Particulado/química , Gases/química , Oxirredução , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa