Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8025): 603-613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987604

RESUMO

A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.


Assuntos
Neoplasias Encefálicas , Encéfalo , Malformações Vasculares do Sistema Nervoso Central , Células Endoteliais , Feto , RNA-Seq , Análise da Expressão Gênica de Célula Única , Feminino , Humanos , Masculino , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/embriologia , Encéfalo/metabolismo , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Comunicação Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/citologia , Feto/irrigação sanguínea , Feto/citologia , Feto/embriologia , Malformações Vasculares do Sistema Nervoso Central/patologia , Antígenos HLA-D/metabolismo , Adulto , Saúde
2.
Brain Behav Immun ; 119: 637-647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.


Assuntos
Doença de Alzheimer , Córtex Cerebral , Obesidade , Animais , Obesidade/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Atrofia , Dieta Hiperlipídica/efeitos adversos , Idoso , Adiposidade , Transcriptoma
3.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187588

RESUMO

The understanding of how different cell types contribute to amyotrophic lateral sclerosis (ALS) pathogenesis is limited. Here we generated a single-nucleus transcriptomic and epigenomic atlas of the frontal cortex of ALS cases with C9orf72 (C9) hexanucleotide repeat expansions and sporadic ALS (sALS). Our findings reveal shared pathways in C9-ALS and sALS, characterized by synaptic dysfunction in excitatory neurons and a disease-associated state in microglia. The disease subtypes diverge with loss of astrocyte homeostasis in C9-ALS, and a more substantial disturbance of inhibitory neurons in sALS. Leveraging high depth 3'-end sequencing, we found a widespread switch towards distal polyadenylation (PA) site usage across ALS subtypes relative to controls. To explore this differential alternative PA (APA), we developed APA-Net, a deep neural network model that uses transcript sequence and expression levels of RNA-binding proteins (RBPs) to predict cell-type specific APA usage and RBP interactions likely to regulate APA across disease subtypes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa