Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39237746

RESUMO

PURPOSE: Targeted radionuclide therapy (TRT) is a cancer treatment with relative therapeutic efficacy across various cancer types. We studied the therapeutic potential of TRT using fibroblast activation protein-α (FAP) targeting sdAbs (4AH29) labelled with 225Ac or 131I in immunocompetent mice in a human FAP (hFAP) expressing lung cancer mouse model. We further explored the combination of TRT with programmed cell death ligand 1 (PD-L1) immune checkpoint blockade (ICB). METHODS: We studied the biodistribution and tumour uptake of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 by ex vivo γ-counting. Therapeutic efficacy of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 was evaluated in an immunocompetent mouse model. Flow cytometry analysis of tumours from [225Ac]Ac-DOTA-4AH29 treated mice was performed. Treatment with [225Ac]Ac-DOTA-4AH29 was repeated in combination with PD-L1 ICB. RESULTS: The biodistribution showed high tumour uptake of [131I]I-GMIB-4AH29 with 3.5 ± 0.5% IA/g 1 h post-injection (p.i.) decreasing to 0.9 ± 0.1% IA/g after 24 h. Tumour uptake of [225Ac]Ac-DOTA-4AH29 was also relevant with 2.1 ± 0.5% IA/g 1 h p.i. with a less steep decrease to 1.7 ± 0.2% IA/g after 24 h. Survival was significantly improved after treatment with low and high doses [131I]I-GMIB-4AH29 or [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Moreover, we observed significantly higher PD-L1 expression in tumours of mice treated with [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Therefore, we combined high dose [225Ac]Ac-DOTA-4AH29 with PD-L1 ICB showing therapeutic synergy. CONCLUSION: [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit high and persistent tumour targeting, translating into prolonged survival in mice bearing aggressive tumours. Moreover, we demonstrate that the combination of PD-L1 ICB with [225Ac]Ac-DOTA-4AH29 TRT enhances its therapeutic efficacy.

2.
Eur J Nucl Med Mol Imaging ; 51(9): 2733-2743, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38587643

RESUMO

BACKGROUND: The PHERGain study (NCT03161353) is assessing early metabolic responses to neoadjuvant treatment with trastuzumab-pertuzumab and chemotherapy de-escalation using a [18Fluorine]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) and a pathological complete response-adapted strategy in HER2-positive (HER2+) early breast cancer (EBC). Herein, we present RESPONSE, a PHERGain substudy, where clinicopathological and molecular predictors of [18F]FDG-PET disease detection were evaluated. METHODS: A total of 500 patients with HER2 + EBC screened in the PHERGain trial with a tumor size > 1.5 cm by magnetic resonance imaging (MRI) were included in the RESPONSE substudy. PET[-] criteria entailed the absence of  ≥ 1 breast lesion with maximum standardized uptake value (SUVmax) ≥ 1.5 × SUVmean liver + 2 standard deviation. Among 75 PET[-] patients screened, 21 with SUVmax levels < 2.5 were randomly selected and matched with 21 PET[+] patients with SUVmax levels ≥ 2.5 based on patient characteristics associated with [18F]FDG-PET status. The association between baseline SUVmax and [18F]FDG-PET status ([-] or [+]) with clinicopathological characteristics was assessed. In addition, evaluation of stromal tumor-infiltrating lymphocytes (sTILs) and gene expression analysis using PAM50 and Vantage 3D™ Cancer Metabolism Panel were specifically compared in a matched cohort of excluded and enrolled patients based on the [18F]FDG-PET eligibility criteria. RESULTS: Median SUVmax at baseline was 7.2 (range, 1-39.3). Among all analyzed patients, a higher SUVmax was associated with a higher tumor stage, larger tumor size, lymph node involvement, hormone receptor-negative status, higher HER2 protein expression, increased Ki67 proliferation index, and higher histological grade (p < 0.05). [18F]FDG-PET [-] criteria patients had smaller tumor size (p = 0.014) along with the absence of lymph node involvement and lower histological grade than [18F]FDG-PET [+] patients (p < 0.01). Although no difference in the levels of sTILs was found among 42 matched [18F]FDG-PET [-]/[+] criteria patients (p = 0.73), [18F]FDG-PET [-] criteria patients showed a decreased risk of recurrence (ROR) and a lower proportion of PAM50 HER2-enriched subtype than [18F]FDG-PET[+] patients (p < 0.05). Differences in the expression of genes involved in cancer metabolism were observed between [18F]FDG-PET [-] and [18F]FDG-PET[+] criteria patients. CONCLUSIONS: These results highlight the clinical, biological, and metabolic heterogeneity of HER2+ breast cancer, which may facilitate the selection of HER2+ EBC patients likely to benefit from [18F]FDG-PET imaging as a tool to guide therapy. TRIAL REGISTRATION: Clinicaltrials.gov; NCT03161353; registration date: May 15, 2017.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Receptor ErbB-2 , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Compostos Radiofarmacêuticos
3.
Horm Metab Res ; 56(2): 134-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931916

RESUMO

The use of radioactive iodine in the treatment of hyperthyroidism is common practice. However, a standardized treatment protocol with regard to radioactive iodine treatment (RAI) remains subject to discussion. We retrospectively analyzed 100 patient records. Patient diagnosis, age, gender, body mass index (BMI), dose of radioactive iodine, thyroid size, the 24 h radioiodine uptake (24 h RAIU) and protein bound iodine (PBI) were deducted, as well as the use of antithyroid drugs prior to RAI. Biochemical parameters were obtained, such as TSH, fT4, fT3, Anti-TPO, Anti-TG antibodies and thyroid stimulating antibodies. After 5 years of follow-up, 46% of the patients proved to be hypothyroid, whereas 8% of the patients were not cured after one dose of RAI. One year after RAI, a larger proportion of patients with a toxic nodule developed hypothyroidism compared to patients with a multinodular goiter (MNG) (44.2% vs. 21.2%). Radioactive iodine dose, PBI, RAIU, BMI, size of the thyroid gland, diagnosis, age and TPO-antibodies showed statistically significant differences in the development of hypothyroidism. Furthermore, thiamazole pretherapy was shown to be a predictor of hypothyroidism, as well as a high PBI value, exhibiting a positive predictive value of 85.2% when the PBI exceeded 0.16. We suggest a standardized measurement of TPO-Ab's to further determine their role in the development of hypothyroidism after RAI. The empirical dosing regimen was very effective, illustrating a 92% cure rate after 1 dose.


Assuntos
Hipotireoidismo , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias da Glândula Tireoide/tratamento farmacológico , Hipotireoidismo/etiologia , Hipotireoidismo/tratamento farmacológico
4.
Horm Metab Res ; 53(7): 444-452, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34169499

RESUMO

There are multiple imaging modalities in primary hyperparathyroidism. Ultrasound examination and subtraction scintigraphy are usually the first-line imaging techniques. When these results are negative or inconsistent, additional [11C]-methionine PET/CT (MET-PET/CT) or 4-dimensional computed tomography can be performed. ​This study aims to evaluate MET-PET/CT in comparison with other imaging techniques in primary hyperparathyroidism. This is a retrospective cohort study. Eighty-four patients with primary hyperparathyroidism, who underwent parathyroid surgery, were included. ​Imaging results have been correlated to the perioperative drop in parathyroid hormone level and to the pathological analysis. ​Descriptive statistics are used, supplemented with 95% Clopper-Pearson confidence intervals for sensitivity and specificity and a sub-analysis with the McNemar test on paired data only. The per-lesion sensitivity of MET-PET/CT seems higher than that of [99mTc]-sestamibi or [99mTc]-tetrofosmin and [99mTc]-pertechnetate subtraction scintigraphy. The McNemar test, on paired data only, shows significantly higher sensitivity of MET-PET/CT compared to ultrasound (p=0.039) and significantly higher specificity of ultrasound compared to subtraction scintigraphy (p=0.035).​ MET-PET/CT after inconclusive or negative ultrasound and/or subtraction scintigraphy has an additional value in 70% of the cases.​ Preoperative parathyroid hormone levels were higher in patients in whom MET-PET/CT correctly predicted the pathological parathyroid glands, compared to those where MET-PET/CT missed at least one adenoma. The same trend was seen for 4-dimensional computed tomography. In conclusion, MET-PET/CT seems a valuable imaging modality in primary hyperparathyroidism, at least as second line imaging approach, with a higher per-lesion sensitivity than ultrasound in such setting. Especially when ultrasound and/or subtraction scintigraphy are inconclusive or negative, MET-PET/CT directs the surgeon to the correct localization of the parathyroid adenoma.


Assuntos
Adenoma/diagnóstico , Radioisótopos de Carbono/análise , Metionina/metabolismo , Neoplasias das Paratireoides/diagnóstico , Adenoma/diagnóstico por imagem , Adenoma/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias das Paratireoides/diagnóstico por imagem , Neoplasias das Paratireoides/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Estudos Retrospectivos
5.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374804

RESUMO

The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.


Assuntos
Antígenos CD/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/imunologia , Animais , Antígenos CD/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Proteína do Gene 3 de Ativação de Linfócitos
6.
J Transl Med ; 17(1): 303, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488153

RESUMO

BACKGROUND: Treatment with anti-PD1 monoclonal antibodies improves the survival of metastatic melanoma patients but only a subgroup of patients benefits from durable disease control. Predictive biomarkers for durable benefit could improve the clinical management of patients. METHODS: Plasma samples were collected from patients receiving anti-PD1 therapy for ctDNA quantitative assessment of BRAFV600 and NRASQ61/G12/G13 mutations. RESULTS: After a median follow-up of 84 weeks 457 samples from 85 patients were analyzed. Patients with undetectable ctDNA at baseline had a better PFS (Hazard ratio (HR) = 0.47, median 26 weeks versus 9 weeks, p = 0.01) and OS (HR = 0.37, median not reached versus 21.3 weeks, p = 0.005) than patients with detectable ctDNA. Additionally, the HR for death was lower after the ctDNA level became undetectable during follow-up (adjusted HR: 0.16 (95% CI 0.07-0.36), p-value < 0.001). ctDNA levels > 500 copies/ml at baseline or week 3 were associated with poor clinical outcome. Patients progressive exclusively in the central nervous system (CNS) had undetectable ctDNA at baseline and at subsequent assessments. In multivariate analysis adjusted for LDH, CRP, ECOG and number of metastatic sites, the ctDNA remained significant for PFS and OS. A positive correlation was observed between ctDNA levels and total metabolic tumor volume (TMTV), number of metastatic sites and total tumor burden. CONCLUSIONS: Assessment of ctDNA baseline and during therapy was predictive for tumor response and clinical outcome in metastatic melanoma patients and reflected the tumor burden. ctDNA evaluation provided reliable complementary information during anti-PD1 antibody therapy.


Assuntos
DNA Tumoral Circulante/sangue , Melanoma/sangue , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Adulto , Idoso , Sistema Nervoso Central/patologia , DNA Tumoral Circulante/genética , Efeitos Psicossociais da Doença , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/genética , Melanoma/patologia , Pessoa de Meia-Idade , Análise Multivariada , Mutação/genética , Metástase Neoplásica , Receptor de Morte Celular Programada 1/metabolismo , Resultado do Tratamento
7.
Mol Pharm ; 16(8): 3524-3533, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31268724

RESUMO

The use of nanobodies (Nbs) as vehicles in targeted alpha therapy (TAT) has gained great interest because of their excellent properties. They combine high in vivo affinity and specificity of binding with fast kinetics. This research investigates a novel targeted therapy that combines the α-particle emitter astatine-211 (211At) and the anti-HER2 Nb 2Rs15d to selectively target HER2+ cancer cells. Two distinctive radiochemical methodologies are investigated using three different coupling reagents. The first method uses the coupling reagents, N-succinimidyl 4-(1,2-bis-tert-butoxycarbonyl)guanidinomethyl-3-(trimethylstannyl)benzoate (Boc2-SGMTB) and N-succinimidyl-3-(trimethylstannyl)benzoate (m-MeATE), which are both directed to amino groups on the Nb, resulting in random conjugation. The second method aims at obtaining a homogeneous tracer population, via a site-specific conjugation of the N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide (MSB) reagent onto the carboxyl-terminal cysteine of the Nb. The resulting radioconjugates are evaluated in vitro and in vivo. 2Rs15d is labeled with 211At using Boc2-SGMTB, m-MeATE, and MSB. After astatination and purification, the binding specificity of the radioconjugates is validated on HER2+ cells, followed by an in vivo biodistribution assessment in SKOV-3 xenografted mice. α-camera imaging is performed to determine uptake and activity distribution in kidneys/tumors. 2Rs15d astatination resulted in a high radiochemical purity >95% for all radioconjugates. The biodistribution studies of all radioconjugates revealed comparable tumor uptake (higher than 8% ID/g at 1 h). [211At]SAGMB-2Rs15d showed minor uptake in normal tissues. Only in the kidneys, a higher uptake was measured after 1 h, but decreased rapidly after 3 h. Astatinated Nbs consisting of m-MeATE or MSB reagents revealed elevated uptake in lungs and stomach, indicating the presence of released 211At. α-Camera imaging of tumors revealed a homogeneous activity distribution. The radioactivity in the kidneys was initially concentrated in the renal cortex, while after 3 h most radioactivity was measured in the medulla, confirming the fast washout into urine. Changing the reagents for Nb astatination resulted in different in vivo biodistribution profiles, while keeping the targeting moiety identical. Boc2-SGMTB is the preferred reagent for Nb astatination because of its high tumor uptake, its low background signals, and its fast renal excretion. We envision [211At]SAGMB-2Rs15d to be a promising therapeutic agent for TAT and aim toward efficacy evaluation.


Assuntos
Astato/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias Ovarianas/radioterapia , Receptor ErbB-2/antagonistas & inibidores , Anticorpos de Domínio Único/administração & dosagem , Partículas alfa/uso terapêutico , Animais , Astato/química , Astato/farmacocinética , Benzoatos/química , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Camundongos , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Distribuição Tecidual , Compostos de Trimetilestanho/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther ; 23(1): 43-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25195597

RESUMO

Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs). These transcriptional modules contained evolutionary-conserved clusters of putative transcription factor binding sites that correspond to a "molecular signature" associated with robust gene expression in the heart. We then validated these CS-CRMs in vivo using an adeno-associated viral vector serotype 9 that drives a reporter gene from a quintessential cardiac-specific α-myosin heavy chain promoter. Most de novo designed CS-CRMs resulted in a >10-fold increase in cardiac gene expression. The most robust CRMs enhanced cardiac-specific transcription 70- to 100-fold. Expression was sustained and restricted to cardiomyocytes. We then combined the most potent CS-CRM4 with a synthetic heart and muscle-specific promoter (SPc5-12) and obtained a significant 20-fold increase in cardiac gene expression compared to the cytomegalovirus promoter. This study underscores the potential of rational vector design to improve the robustness of cardiac gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Genoma , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miosinas Ventriculares/genética , Animais , Sítios de Ligação , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Biologia Computacional , Citomegalovirus/química , Citomegalovirus/genética , Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miocárdio/patologia , Miócitos Cardíacos/patologia , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Miosinas Ventriculares/metabolismo
9.
EJNMMI Radiopharm Chem ; 9(1): 54, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048805

RESUMO

BACKGROUND: Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [18F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42). Both the alpha isoform of FAP and the FR are established tumour markers. FAP-α is known to be overexpressed mainly by cancer-associated fibroblasts in breast, ovarian, and other cancers, while its expression in normal tissues is low or undetectable. FR-α has an elevated expression in epithelial cancers, such as ovarian, brain and lung cancers. Non-invasive imaging techniques, such as PET-imaging, using tracers targeting specific tumour markers can provide molecular information over both the tumour and its environment, which aides in the diagnosis, therapy selection and assessment of the cancer treatment. RESULTS: [18F]SFB was synthesized using a fully automated three-step, one-pot reaction. The total procedure time was 54 min and results in [18F]SFB with a RCP > 90% and a RCY d.c. of 44 ± 4% (n = 13). The manual conjugation reaction after purification produced [18F]FB-sdAbs with a RCP > 95%, an end of synthesis activity > 600 MBq and an apparent molar activity > 10 GBq/µmol. Overall RCY d.c., corrected to the trapping of [18F]F- on the QMA, were 9% (n = 1) and 5 ± 2% (n = 3) for [18F]FB-2BD42 and [18F]FB-4AH29, respectively. CONCLUSION: [18F]SFB synthesis was successfully automated and upscaled on a Trasis AllInOne module. The anti-hFAP-α and anti-hFR-α sdAbs were radiofluorinated, yielding similar RCYs d.c. and RCPs, showing the potential of this method as a generic radiofluorination strategy for sdAbs. The radiofluorinated sdAbs showed a favourable biodistribution pattern and are attractive for further characterization as new PET tracers for FAP-α and FR-α imaging.

10.
J Nucl Med ; 65(2): 178-184, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302159

RESUMO

Human epidermal growth factor receptor 2 (HER2) status is used for decision-making in breast carcinoma treatment. The status is obtained through immunohistochemistry or in situ hybridization. These two methods have the disadvantage of necessitating tissue sampling, which is prone to error due to tumor heterogeneity or interobserver variability. Whole-body imaging might be a solution to map HER2 expression throughout the body. Methods: Twenty patients with locally advanced or metastatic breast carcinoma (5 HER2-positive and 15 HER2-negative patients) were included in this phase II trial to assess the repeatability of uptake quantification and the extended safety of the [68Ga]Ga-NOTA-anti-HER2 single-domain antibody (sdAb). The tracer was injected, followed by a PET/CT scan at 90 min. Within 8 d, the procedure was repeated. Blood samples were taken for antidrug antibody (ADA) assessment and liquid biopsies. On available tissues, immunohistochemistry, in situ hybridization, and mass spectrometry were performed to determine the correlation of HER2 status with uptake values measured on PET. If relevant preexisting [18F]FDG PET/CT images were available (performed as standard of care), a comparison was made. Results: With a repeatability coefficient of 21.8%, this imaging technique was repeatable. No clear correlation between PET/CT uptake values and pathology could be established, as even patients with low levels of HER2 expression showed moderate to high uptake. Comparison with [18F]FDG PET/CT in 16 patients demonstrated that in 7 patients, [68Ga]Ga-NOTA-anti-HER2 shows interlesional heterogeneity within the same patient, and [18F]FDG uptake did not show the same heterogeneous uptake in all patients. In some patients, the extent of disease was clearer with the [68Ga]Ga-NOTA-anti-HER2-sdAb. Sixteen adverse events were reported but all without a clear relationship to the tracer. Three patients with preexisting ADAs did not show adverse reactions. No new ADAs developed. Conclusion: [68Ga]Ga-NOTA-anti-HER2-sdAb PET/CT imaging shows similar repeatability to [18F]FDG. It is safe for clinical use. There is tracer uptake in cancer lesions, even in patients previously determined to be HER2-low or -negative. The tracer shows potential in the assessment of interlesional heterogeneity of HER2 expression. In a subset of patients, [68Ga]Ga-NOTA-anti-HER2-sdAb uptake was seen in lesions with no or low [18F]FDG uptake. These findings support further clinical development of [68Ga]Ga-NOTA-anti-HER2-sdAb as a PET/CT tracer in breast cancer patients.


Assuntos
Neoplasias da Mama , Anticorpos de Domínio Único , Humanos , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Anticorpos de Domínio Único/metabolismo , Radioisótopos de Gálio , Fluordesoxiglucose F18 , Neoplasias da Mama/metabolismo , Tomografia por Emissão de Pósitrons
11.
J Nucl Med ; 65(5): 708-713, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575192

RESUMO

The PHERGain trial investigated the potential of metabolic imaging to identify candidates for chemotherapy deescalation in human epidermal growth factor receptor 2 (HER2)-positive, invasive, operable breast cancer with at least 1 breast lesion evaluable by [18F]FDG PET/CT. [18F]FDG PET/CT responders were defined as patients with an SUVmax reduction (ΔSUVmax) of at least 40% in all of their target lesions after 2 cycles of trastuzumab and pertuzumab (HP) (with or without endocrine therapy). In total, 227 of 285 patients (80%) included in the HP arm showed a predefined metabolic response and received a total of 8 cycles of HP (with or without endocrine therapy). Pathologic complete response (pCR), defined as ypT0/isN0, was achieved in 37.9% of the patients. Here, we describe the secondary preplanned analysis of the best cutoff of ΔSUVmax for pCR prediction. Methods: Receiver-operating-characteristic analysis was applied to look for the most appropriate ΔSUVmax cutoff in HER2-positive early breast cancer patients treated exclusively with neoadjuvant HP (with or without endocrine therapy). Results: The ΔSUVmax capability of predicting pCR in terms of the area under the receiver-operating-characteristic curve was 72.1% (95% CI, 65.1-79.2%). The optimal ΔSUVmax cutoff was found to be 77.0%, with a 51.2% sensitivity and a 78.7% specificity. With this cutoff, 74 of 285 patients (26%) would be classified as metabolic responders, increasing the pCR rate from 37.9% (cutoff ≥ 40%) to 59.5% (44/74 patients) (P < 0.01). With this optimized cutoff, 44 of 285 patients (15.4%) would avoid chemotherapy in either the neoadjuvant or the adjuvant setting compared with 86 of 285 patients (30.2%) using the original cutoff (P < 0.001). Conclusion: In the PHERGain trial, an increased SUVmax cutoff (≥77%) after 2 cycles of exclusive HP (with or without endocrine therapy) achieves a pCR in the range of the control arm with chemotherapy plus HP (59.5% vs. 57.7%, respectively), further identifying a subgroup of patients with HER2-addicted tumors. However, the original cutoff (≥40%) maximizes the number of patients who could avoid chemotherapy.


Assuntos
Neoplasias da Mama , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor ErbB-2 , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Receptor ErbB-2/metabolismo , Pessoa de Meia-Idade , Fluordesoxiglucose F18 , Idoso , Adulto , Resultado do Tratamento , Trastuzumab/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico
12.
Cancers (Basel) ; 15(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37627111

RESUMO

BACKGROUND: Antibodies that inhibit the programmed cell death protein 1 (PD-1) receptor offer a significant survival benefit, potentially cure (i.e., durable disease-free survival following treatment discontinuation), a substantial proportion of patients with advanced melanoma. Most patients however fail to respond to such treatment or acquire resistance. Previously, we reported that baseline total metabolic tumour volume (TMTV) determined by whole-body [18F]FDG PET/CT was independently correlated with survival and able to predict the futility of treatment. Manual delineation of [18F]FDG-avid lesions is however labour intensive and not suitable for routine use. A predictive survival model is proposed based on automated analysis of baseline, whole-body [18F]FDG images. METHODS: Lesions were segmented on [18F]FDG PET/CT using a deep-learning approach and derived features were investigated through Kaplan-Meier survival estimates with univariate logrank test and Cox regression analyses. Selected parameters were evaluated in multivariate Cox survival regressors. RESULTS: In the development set of 69 patients, overall survival prediction based on TMTV, lactate dehydrogenase levels and presence of brain metastases achieved an area under the curve of 0.78 at one year, 0.70 at two years. No statistically significant difference was observed with respect to using manually segmented lesions. Internal validation on 31 patients yielded scores of 0.76 for one year and 0.74 for two years. CONCLUSIONS: Automatically extracted TMTV based on whole-body [18F]FDG PET/CT can aid in building predictive models that can support therapeutic decisions in patients treated with immune-checkpoint blockade.

13.
J Nucl Med ; 64(9): 1378-1384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474271

RESUMO

Macrophages play an important role throughout the body. Antiinflammatory macrophages expressing the macrophage mannose receptor (MMR, CD206) are involved in disease development, ranging from oncology to atherosclerosis and rheumatoid arthritis. [68Ga]Ga-NOTA-anti-CD206 single-domain antibody (sdAb) is a PET tracer targeting CD206. This first-in-human study, as its primary objective, evaluated the safety, biodistribution, and dosimetry of this tracer. The secondary objective was to assess its tumor uptake. Methods: Seven patients with a solid tumor of at least 10 mm, an Eastern Cooperative Oncology Group score of 0 or 1, and good renal and hepatic function were included. Safety was evaluated using clinical examination and blood sampling before and after injection. For biodistribution and dosimetry, PET/CT was performed at 11, 90, and 150 min after injection; organs showing tracer uptake were delineated, and dosimetry was evaluated. Blood samples were obtained at selected time points for blood clearance. Metabolites in blood and urine were assessed. Results: Seven patients were injected with, on average, 191 MBq of [68Ga]Ga-NOTA-anti-CD206-sdAb. Only 1 transient adverse event of mild severity was considered to be possibly, although unlikely, related to the study drug (headache, Common Terminology Criteria for Adverse Events grade 1). The blood clearance was fast, with less than 20% of the injected activity remaining after 80 min. There was uptake in the liver, kidneys, spleen, adrenals, and red bone marrow. The average effective dose from the radiopharmaceutical was 4.2 mSv for males and 5.2 mSv for females. No metabolites were detected. Preliminary data of tumor uptake in cancer lesions showed higher uptake in the 3 patients who subsequently progressed than in the 3 patients without progression. One patient could not be evaluated because of technical failure. Conclusion: [68Ga]Ga-NOTA-anti-CD206-sdAb is safe and well tolerated. It shows rapid blood clearance and renal excretion, enabling high contrast-to-noise imaging at 90 min after injection. The radiation dose is comparable to that of routinely used PET tracers. These findings and the preliminary results in cancer patients warrant further investigation of this tracer in phase II clinical trials.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Distribuição Tecidual , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Radiometria , Macrófagos/metabolismo
14.
J Nucl Med ; 64(5): 751-758, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055223

RESUMO

Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.


Assuntos
Melanoma Experimental , Anticorpos de Domínio Único , Animais , Humanos , Anticorpos de Domínio Único/farmacologia , Antígeno B7-H1/metabolismo , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Imunomodulação , Melanoma Experimental/radioterapia , Imunidade , Linhagem Celular Tumoral
15.
Theranostics ; 13(15): 5483-5500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908728

RESUMO

Rationale: Although promising responses are obtained in patients treated with immune checkpoint inhibitors targeting programmed death ligand 1 (PD-L1) and its receptor programmed death-1 (PD-1), only a fraction of patients benefits from this immunotherapy. Cancer vaccination may be an effective approach to improve the response to immune checkpoint inhibitors anti-PD-L1/PD-1 therapy. However, there is a lack of research on the dynamics of PD-L1 expression in response to cancer vaccination. Methods: We performed non-invasive whole-body imaging to visualize PD-L1 expression at different timepoints after vaccination of melanoma-bearing mice. Mice bearing ovalbumin (OVA) expressing B16 tumors were i.v. injected with the Galsome mRNA vaccine: OVA encoding mRNA lipoplexes co-encapsulating a low or a high dose of the atypical adjuvant α-galactosylceramide (αGC) to activate invariant natural killer T (iNKT) cells. Serial non-invasive whole-body immune imaging was performed using a technetium-99m (99mTc)-labeled anti-PD-L1 nanobody, single-photon emission computerized tomography (SPECT) and X-ray computed tomography (CT) images were quantified. Additionally, cellular expression of PD-L1 was evaluated with flow cytometry. Results: SPECT/CT-imaging showed a rapid and systemic upregulation of PD-L1 after vaccination. PD-L1 expression could not be correlated to the αGC-dose, although we observed a dose-dependent iNKT cell activation. Dynamics of PD-L1 expression were organ-dependent and most pronounced in lungs and liver, organs to which the vaccine was distributed. PD-L1 expression in lungs increased immediately after vaccination and gradually decreased over time, whereas in liver, vaccination-induced PD-L1 upregulation was short-lived. Flow cytometric analysis of these organs further showed myeloid cells as well as non-immune cells with elevated PD-L1 expression in response to vaccination. SPECT/CT imaging of the tumor demonstrated that the expression of PD-L1 remained stable over time and was overall not affected by vaccination although flow cytometric analysis at the cellular level demonstrated changes in PD-L1 expression in various immune cell populations following vaccination. Conclusion: Repeated non-invasive whole-body imaging using 99mTc-labeled anti-PD-L1 nanobodies allows to document the dynamic nature of PD-L1 expression upon vaccination. Galsome vaccination rapidly induced systemic upregulation of PD-L1 expression with the most pronounced upregulation in lungs and liver while flow cytometry analysis showed upregulation of PD-L1 in the tumor microenvironment. This study shows that imaging using nanobodies may be useful for monitoring vaccine-mediated PD-L1 modulation in patients and could provide a rationale for combination therapy. To the best of our knowledge, this is the first report that visualizes PD-L1 expression upon cancer vaccination.


Assuntos
Melanoma , Células T Matadoras Naturais , Anticorpos de Domínio Único , Humanos , Camundongos , Animais , Antígeno B7-H1 , Células T Matadoras Naturais/metabolismo , Anticorpos de Domínio Único/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Vacinas Sintéticas , Melanoma/diagnóstico por imagem , Melanoma/terapia , Microambiente Tumoral , Vacinas de mRNA
16.
Comput Methods Programs Biomed ; 221: 106902, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35636357

RESUMO

BACKGROUND AND OBJECTIVE: In oncology, 18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) / computed tomography (CT) is widely used to identify and analyse metabolically-active tumours. The combination of the high sensitivity and specificity from 18F-FDG PET and the high resolution from CT makes accurate assessment of disease status and treatment response possible. Since cancer is a systemic disease, whole-body imaging is of high interest. Moreover, whole-body metabolic tumour burden is emerging as a promising new biomarker predicting outcome for innovative immunotherapy in different tumour types. However, this comes with certain challenges such as the large amount of data for manual reading, different appearance of lesions across the body and cumbersome reporting, hampering its use in clinical routine. Automation of the reading can facilitate the process, maximise the information retrieved from the images and support clinicians in making treatment decisions. METHODS: This work proposes a fully automated system for lesion detection and segmentation on whole-body 18F-FDG PET/CT. The novelty of the method stems from the fact that the same two-step approach used when manually reading the images was adopted, consisting of an intensity-based thresholding on PET followed by a classification that specifies which regions represent normal physiological uptake and which are malignant tissue. The dataset contained 69 patients treated for malignant melanoma. Baseline and follow-up scans together offered 267 images for training and testing. RESULTS: On an unseen dataset of 53 PET/CT images, a median F1-score of 0.7500 was achieved with, on average, 1.566 false positive lesions per scan. Metabolically-active tumours were segmented with a median dice score of 0.8493 and absolute volume difference of 0.2986 ml. CONCLUSIONS: The proposed fully automated method for the segmentation and detection of metabolically-active lesions on whole-body 18F-FDG PET/CT achieved competitive results. Moreover, it was compared to a direct segmentation approach which it outperformed for all metrics.


Assuntos
Aprendizado Profundo , Melanoma , Computadores , Fluordesoxiglucose F18 , Humanos , Melanoma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
17.
Mol Cancer Ther ; 21(7): 1136-1148, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499391

RESUMO

Targeted radionuclide therapy (TRT) using probes labeled with Lutetium-177 (177Lu) represents a new and growing type of cancer therapy. We studied immunologic changes in response to TRT with 177Lu labeled anti-human CD20 camelid single domain antibodies (sdAb) in a B16-melanoma model transfected to express human CD20, the target antigen, and ovalbumin, a surrogate tumor antigen. High-dose TRT induced melanoma cell death, calreticulin exposure, and ATP-release in vitro. Melanoma-bearing mice received fractionated low and high-dose TRT via tumor targeting anti-human CD20 sdAbs, as opposed to control sdAbs. Tumor growth was delayed with both doses. Low- and high-dose TRT increased IL10 serum levels. Low-dose TRT also decreased CCL5 serum levels. At the tumor, high-dose TRT induced a type I IFN gene signature, while low-dose TRT induced a proinflammatory gene signature. Low- and high-dose TRT increased the percentage of PD-L1pos and PD-L2pos myeloid cells in tumors with a marked increase in alternatively activated macrophages after high-dose TRT. The percentage of tumor-infiltrating T cells was not changed, yet a modest increase in ovalbumin-specific CD8pos T-cells was observed after low-dose TRT. Contradictory, low and high-dose TRT decreased CD4pos Th1 cells in addition to double negative T cells. In conclusion, these data suggest that low and high-dose TRT induce distinct immunologic changes, which might serve as an anchoring point for combination therapy.


Assuntos
Melanoma Experimental , Anticorpos de Domínio Único , Animais , Antígenos CD20 , Linhagem Celular Tumoral , Modelos Animais de Doenças , Lutécio , Melanoma Experimental/patologia , Camundongos , Ovalbumina , Radioisótopos/uso terapêutico
18.
Mol Cancer Ther ; 21(1): 159-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667109

RESUMO

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the ß--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/radioterapia , Medicina de Precisão/métodos , Radioisótopos/uso terapêutico , Anticorpos de Domínio Único/uso terapêutico , Animais , Feminino , Humanos , Camundongos , Radioisótopos/farmacologia , Anticorpos de Domínio Único/farmacologia
19.
Front Immunol ; 13: 811867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493461

RESUMO

Immune checkpoint blockade (ICB) of the PD-1 pathway revolutionized the survival forecast for advanced non-small cell lung cancer (NSCLC). Yet, the majority of PD-L1+ NSCLC patients are refractory to anti-PD-L1 therapy. Recent observations indicate a pivotal role for the PD-L1+ tumor-infiltrating myeloid cells in therapy failure. As the latter comprise a heterogenous population in the lung tumor microenvironment, we applied an orthotopic Lewis Lung Carcinoma (LLC) model to evaluate 11 different tumor-residing myeloid subsets in response to anti-PD-L1 therapy. While we observed significantly reduced fractions of tumor-infiltrating MHC-IIlow macrophages and monocytes, serological levels of TNF-α restored in lung tumor-bearing mice. Notably, we demonstrated in vivo and in vitro that anti-PD-L1 therapy mediated a monocyte-specific production of, and response to TNF-α, further accompanied by their significant upregulation of CD80, VISTA, LAG-3, SIRP-α and TIM-3. Nevertheless, co-blockade of PD-L1 and TNF-α did not reduce LLC tumor growth. A phenomenon that was partly explained by the observation that monocytes and TNF-α play a Janus-faced role in anti-PD-L1 therapy-mediated CTL stimulation. This was endorsed by the observation that monocytes appeared crucial to effectively boost T cell-mediated LLC killing in vitro upon combined PD-L1 with LAG-3 or SIRP-α blockade. Hence, this study enlightens the biomarker potential of lung tumor-infiltrated monocytes to define more effective ICB combination strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/patologia , Camundongos , Monócitos , Microambiente Tumoral , Fator de Necrose Tumoral alfa/uso terapêutico
20.
J Virol ; 84(11): 5627-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237085

RESUMO

Lentiviral vectors are promising vaccine vector candidates that have been tested extensively in preclinical models of infectious disease and cancer immunotherapy. They are also used in gene therapy clinical trials both for the ex vivo modification of cells and for direct in vivo injection. It is therefore critical to understand the mechanism(s) by which such vectors might stimulate the immune system. We evaluated the effect of lentiviral vectors on myeloid dendritic cells (DC), the main target of lentiviral transduction following subcutaneous immunization. The activation of DC cultures was independent of the lentiviral pseudotype but dependent on cell entry and reverse transcription. In vivo-transduced DC also displayed a mature phenotype, produced tumor necrosis factor alpha (TNF-alpha), and stimulated naive CD8(+) T cells. The lentiviral activation of DC was Toll-like receptor (TLR) dependent, as it was inhibited in TRIF/MyD88 knockout (TRIF/MyD88(-/-)) DC. TLR3(-/-) or TLR7(-/-) DC were less activated, and reverse transcription was important for the activation of TLR7(-/-) DC. Moreover, lentivirally transduced DC lacking TLR3 or TLR7 had an impaired capacity to induce antigen-specific CD8(+) T-cell responses. In conclusion, we demonstrated TLR-dependent DC activation by lentiviral vectors, explaining their immunogenicity. These data allow the rational development of strategies to manipulate the host's immune response to the transgene.


Assuntos
Vetores Genéticos/imunologia , HIV-1/genética , Lentivirus/genética , Glicoproteínas de Membrana/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Vetores Genéticos/farmacologia , Imunidade , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa