Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 115(3): 27, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146539

RESUMO

Heart failure is a major health problem worldwide with a significant morbidity and mortality rate. Although studied extensively in animal models, data from patients at the compensated disease stage are lacking. We sampled myocardium biopsies from aortic stenosis patients with compensated hypertrophy and moderate heart failure and used transcriptomics to study the transition to failure. Sequencing and comparative analysis of analogous samples of mice with transverse aortic constriction identified 25 candidate genes with similar regulation in response to pressure overload, reflecting highly conserved molecular processes. The gene cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is upregulated in the transition to failure in human and mouse and its function is unknown. Homology to ion channel regulatory toxins suggests a role in Ca2+ cycling. CRISPR/Cas9-mediated loss-of-function leads to dysregulated Ca2+ handling in human-induced pluripotent stem cell-derived cardiomyocytes. The downregulation of prohypertrophic, proapoptotic and Ca2+-signaling pathways upon CRISPLD1-KO and its upregulation in the transition to failure implicates a contribution to adverse remodeling. These findings provide new pathophysiological data on Ca2+ regulation in the transition to failure and novel candidate genes with promising potential for therapeutic interventions.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Evolução Molecular , Insuficiência Cardíaca/metabolismo , Sequência de Aminoácidos , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Apoptose , Biópsia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Sequência Conservada , Regulação para Baixo , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
2.
Nucleic Acids Res ; 46(6): 2850-2867, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29394407

RESUMO

Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-ß-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-ß-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of ß-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2-5 and GATA4 in stabilized-ß-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/ß-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing ß-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/ß-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway.


Assuntos
Cromatina/genética , Fator de Transcrição GATA4/genética , Insuficiência Cardíaca/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , beta Catenina/genética , Adulto , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Progressão da Doença , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
3.
Circulation ; 135(19): 1832-1847, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28167635

RESUMO

BACKGROUND: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to ß-adrenergic stimulation mediated via canonical ß1- and ß2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.


Assuntos
Células-Tronco Embrionárias/transplante , Insuficiência Cardíaca/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Engenharia Tecidual/métodos , Remodelação Ventricular/fisiologia , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Insuficiência Cardíaca/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Impressão Tridimensional , Ratos , Ratos Nus
4.
J Mol Cell Cardiol ; 113: 9-21, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28941705

RESUMO

The ability to generate patient-specific induced pluripotent stem cells (iPSCs) provides a unique opportunity for modeling heart disease in vitro. In this study, we generated iPSCs from a patient with dilated cardiomyopathy (DCM) caused by a missense mutation S635A in RNA-binding motif protein 20 (RBM20) and investigated the functionality and cell biology of cardiomyocytes (CMs) derived from patient-specific iPSCs (RBM20-iPSCs). The RBM20-iPSC-CMs showed abnormal distribution of sarcomeric α-actinin and defective calcium handling compared to control-iPSC-CMs, suggesting disorganized myofilament structure and altered calcium machinery in CMs of the RBM20 patient. Engineered heart muscles (EHMs) from RBM20-iPSC-CMs showed that not only active force generation was impaired in RBM20-EHMs but also passive stress of the tissue was decreased, suggesting a higher visco-elasticity of RBM20-EHMs. Furthermore, we observed a reduced titin (TTN) N2B-isoform expression in RBM20-iPSC-CMs by demonstrating a reduction of exon skipping in the PEVK region of TTN and an inhibition of TTN isoform switch. In contrast, in control-iPSC-CMs both TTN isoforms N2B and N2BA were expressed, indicating that the TTN isoform switch occurs already during early cardiogenesis. Using next generation RNA sequencing, we mapped transcriptome and splicing target profiles of RBM20-iPSC-CMs and identified different cardiac gene networks in response to the analyzed RBM20 mutation in cardiac-specific processes. These findings shed the first light on molecular mechanisms of RBM20-dependent pathological cardiac remodeling leading to DCM. Our data demonstrate that iPSC-CMs coupled with EHMs provide a powerful tool for evaluating disease-relevant functional defects and for a deeper mechanistic understanding of alternative splicing-related cardiac diseases.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adulto , Animais , Cálcio/metabolismo , Células Cultivadas , Conectina/metabolismo , Feminino , Humanos , Camundongos , Mutação , Fenótipo , Splicing de RNA/genética , Sarcômeros/metabolismo , Transcriptoma/genética
5.
BMC Evol Biol ; 17(1): 168, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28709396

RESUMO

BACKGROUND: Gene duplications provide genetic material for the evolution of new morphological and physiological features. One copy can preserve the original gene functions while the second copy may evolve new functions (neofunctionalisation). Gene duplications may thus provide new genes involved in evolutionary novelties. RESULTS: We have studied the duplicated homeobox gene homothorax (hth) in the spider species Parasteatoda tepidariorum and Pholcus phalangioides and have compared these data with previously published data from additional spider species. We show that the expression pattern of hth1 is highly conserved among spiders, consistent with the notion that this gene copy preserves the original hth functions. By contrast, hth2 has a markedly different expression profile especially in the prosomal appendages. The pattern in the pedipalps and legs consists of several segmental rings, suggesting a possible role of hth2 in limb joint development. Intriguingly, however, the hth2 pattern is much less conserved between the species than hth1 and shows a species specific pattern in each species investigated so far. CONCLUSIONS: We hypothesise that the hth2 gene has gained a new patterning function after gene duplication, but has then undergone a second phase of diversification of its new role in the spider clade. The evolution of hth2 may thus provide an interesting example for a duplicated gene that has not only contributed to genetic diversity through neofunctionalisation, but beyond that has been able to escape evolutionary conservation after neofunctionalisation thus forming the basis for further genetic diversification.


Assuntos
Duplicação Gênica , Aranhas/genética , Animais , Evolução Molecular , Extremidades/anatomia & histologia , Perfilação da Expressão Gênica , Fenótipo , Filogenia
6.
J Transl Med ; 14(1): 149, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27234427

RESUMO

BACKGROUND: Hemodynamic load leads to cardiac hypertrophy and heart failure. While afterload (pressure overload) induces concentric hypertrophy, elevation of preload (volume overload) yields eccentric hypertrophy and is associated with a better outcome. Here we analysed the proteomic pattern of mice subjected to short-term preload. METHODS AND RESULTS: Female FVB/N mice were subjected to aortocaval shunt-induced volume overload that leads to an eccentric hypertrophy (left ventricular weight/tibia length +31 %) with sustained systolic heart function at 1 week after operation. Two-dimensional gel electrophoresis (2-DE) followed by mass spectrometric analysis showed alteration in the expression of 25 protein spots representing 21 different proteins. 64 % of these protein spots were up-regulated and 36 % of the protein spots were consistently down-regulated. Interestingly, α-1-antitrypsin was down-regulated, indicating higher elastin degradation and possibly contributing to the early dilatation. In addition to contractile and mitochondrial proteins, polymerase I and transcript release factor protein (PTRF) was also up-regulated, possibly contributing to the preload-induced signal transduction. CONCLUSIONS: Our findings reveal the proteomic changes of early-stage eccentric myocardial remodeling after volume overload. Induced expression of some of the respiratory chain enzymes suggests a metabolic shift towards an oxidative phosphorylation that might contribute to the favorable remodeling seen in early VO. Down-regulation of α-1-antitrypsin might contribute to extracellular matrix remodeling and left ventricular dilatation. We also identified PTRF as a potential signaling regulator of volume overload-induced cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Proteômica/métodos , Animais , Western Blotting , Volume Cardíaco , Cardiomegalia/patologia , Cromatografia Líquida , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Feminino , Masculino , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Mapas de Interação de Proteínas , Proteoma/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Espectrometria de Massas em Tandem
7.
Proc Natl Acad Sci U S A ; 109(13): 4921-6, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22421434

RESUMO

Evolution often results in morphologically similar solutions in different organisms, a phenomenon known as convergence. However, there is little knowledge of the processes that lead to convergence at the genetic level. The genes of the Hox cluster control morphology in animals. They may also be central to the convergence of morphological traits, but whether morphological similarities also require similar changes in Hox gene function is disputed. In arthropods, body subdivision into a region with locomotory appendages ("thorax") and a region with reduced appendages ("abdomen") has evolved convergently in several groups, e.g., spiders and insects. In insects, legs develop in the expression domain of the Hox gene Antennapedia (Antp), whereas the Hox genes Ultrabithorax (Ubx) and abdominal-A mediate leg repression in the abdomen. Here, we show that, unlike Antp in insects, the Antp gene in the spider Achaearanea tepidariorum represses legs in the first segment of the abdomen (opisthosoma), and that Antp and Ubx are redundant in the following segment. The down-regulation of Antp in A. tepidariorum leads to a striking 10-legged phenotype. We present evidence from ectopic expression of the spider Antp gene in Drosophila embryos and imaginal tissue that this unique function of Antp is not due to changes in the Antp protein, but likely due to divergent evolution of cofactors, Hox collaborators or target genes in spiders and flies. Our results illustrate an interesting example of convergent evolution of abdominal leg repression in arthropods by altering the role of distinct Hox genes at different levels of their action.


Assuntos
Abdome/anatomia & histologia , Proteína do Homeodomínio de Antennapedia/genética , Evolução Biológica , Extremidades/anatomia & histologia , Proteínas Repressoras/metabolismo , Aranhas/anatomia & histologia , Aranhas/genética , Animais , Proteína do Homeodomínio de Antennapedia/metabolismo , Antenas de Artrópodes/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Interferência de RNA , Aranhas/embriologia
8.
PLoS Genet ; 7(10): e1002342, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028676

RESUMO

Despite many aspects of the regulation of segmentation being conserved among arthropods, the evolution of novel gene functions has played an important role in the evolution of developmental regulation and the emergence of new segmental structures. Moreover the study of such novel gene functions can be informative with respect to the patterns and direction of evolutionary changes in developmental programs. The homeobox gene Distal-less (Dll) is known for its conserved function in appendage development in metazoans. In arthropods, Dll is required for the specification of distal appendage structures. Here we describe a novel and unexpected role of Dll in the spider Achaearanea tepidariorum. We detect At-Dll transcripts not only in the appendages, but unexpectedly also in an anterior domain during early development, prior to the specification of the limb primordia. A similar early Dll domain is present in the distantly related spider Pholcus phalangioides. In A. tepidariorum this early At-Dll expression is required for head segmentation. RNA interference results in spiders that lack either the first or the first and the second walking leg segments. The early At-Dll expression is also required for the activation of the segment polarity genes engrailed and hedgehog in this region. Our work identifies the Distal-less gene as a novel factor in anterior spider segmentation with a gap gene-like function. This novel role of Dll is interesting because Dll expression is reduced in this region in crustaceans and the homologous insect segment, the mandible segment, does not express Dll and does not require this gene for patterning. We therefore discuss the possible implications of our results for understanding the evolution and diversification of the mandible segment.


Assuntos
Padronização Corporal/genética , Proteínas de Homeodomínio/fisiologia , Aranhas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Animais , Evolução Biológica , Polaridade Celular , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fenótipo , Interferência de RNA , Aranhas/anatomia & histologia , Aranhas/genética , Fatores de Transcrição/genética
9.
J Am Coll Cardiol ; 74(14): 1804-1819, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31582141

RESUMO

BACKGROUND: The combination of cardiomyocyte (CM) and vascular cell (VC) fetal reprogramming upon stress culminates in end-stage heart failure (HF) by mechanisms that are not fully understood. Previous studies suggest KLF15 as a key regulator of CM hypertrophy. OBJECTIVES: This study aimed to characterize the impact of KLF15-dependent cardiac transcriptional networks leading to HF progression, amenable to therapeutic intervention in the adult heart. METHODS: Transcriptomic bioinformatics, phenotyping of Klf15 knockout mice, Wnt-signaling-modulated hearts, and pressure overload and myocardial ischemia models were applied. Human KLF15 knockout embryonic stem cells and engineered human myocardium, and human samples were used to validate the relevance of the identified mechanisms. RESULTS: The authors identified a sequential, postnatal transcriptional repression mediated by KLF15 of pathways implicated in pathological tissue remodeling, including distinct Wnt-pathways that control CM fetal reprogramming and VC remodeling. The authors further uncovered a vascular program induced by a cellular crosstalk initiated by CM, characterized by a reduction of KLF15 and a concomitant activation of Wnt-dependent transcriptional signaling. Within this program, a so-far uncharacterized cardiac player, SHISA3, primarily expressed in VCs in fetal hearts and pathological remodeling was identified. Importantly, the KLF15 and Wnt codependent SHISA3 regulation was demonstrated to be conserved in mouse and human models. CONCLUSIONS: The authors unraveled a network interplay defined by KLF15-Wnt dynamics controlling CM and VC homeostasis in the postnatal heart and demonstrated its potential as a cardiac-specific therapeutic target in HF. Within this network, they identified SHISA3 as a novel, evolutionarily conserved VC marker involved in pathological remodeling in HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Fatores de Transcrição Kruppel-Like/deficiência , Proteínas de Membrana/biossíntese , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Clin Invest ; 127(12): 4285-4296, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083322

RESUMO

Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2-expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2-expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2-expressing mice. The preserved function and improved survival in cyclin D2-expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin-dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2-induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.


Assuntos
Doenças da Aorta/metabolismo , Cardiomegalia/metabolismo , Proliferação de Células , Ciclina D2/metabolismo , Insuficiência Cardíaca/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Cardiomegalia/genética , Cardiomegalia/patologia , Constrição Patológica , Ciclina D2/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia
11.
Eur J Heart Fail ; 18(4): 362-71, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26694078

RESUMO

AIM: We have previously reported that early phase (1 week) of experimental volume overload (VO) has an adaptive phenotype while wall stress-matched pressure overload (PO) is maladaptive. Here we investigate the transition from adaptation to heart failure (HF) in long-term VO. METHODS AND RESULTS: FVB/N wild-type mice were subjected to VO induced by aortocaval shunt, and were followed by serial echocardiography until in vivo left ventricular ejection fraction was below <50% (135 ± 35 days). Heart failure was evident from increased lung and liver weight and increased mortality compared with sham. Maladaptive remodelling resulted in significantly reduced sarcomeric titin phosphorylation (causing increased sarcomeric stiffness), whereas interstitial fibrosis was not increased. This was paralleled by re-expression of the fetal gene program, activation of calcium/calmodulin-dependent protein kinase II (CaMKII), decreased protein kinase B (Akt) phosphorylation, high oxidative stress, and increased apoptosis. Consistently, development of HF and mortality were significantly aggravated in Akt-deficient mice. CONCLUSION: Transition to HF in VO is associated with decreased Akt and increased CaMKII signalling pathways together with increased oxidative stress and apoptosis. Lack of interstitial fibrosis together with sarcomeric titin hypophosphorylation indicates an increased stiffness at the sarcomeric but not matrix level in VO-induced HF (in contrast to PO). Transition to HF may result from myocyte loss and myocyte dysfunction owing to increased stiffness.


Assuntos
Adaptação Fisiológica/fisiologia , Aorta/cirurgia , Apoptose , Insuficiência Cardíaca/fisiopatologia , Estresse Oxidativo , Pressão , Volume Sistólico , Veia Cava Inferior/cirurgia , Remodelação Ventricular/fisiologia , Animais , Derivação Arteriovenosa Cirúrgica , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conectina/metabolismo , Ecocardiografia , Regulação da Expressão Gênica no Desenvolvimento , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos , Mortalidade , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcômeros , Transdução de Sinais , Estresse Mecânico , Remodelação Ventricular/genética
12.
Sci Rep ; 6: 33853, 2016 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-27667030

RESUMO

TBC1D10C is a protein previously demonstrated to bind and inhibit Ras and Calcineurin. In cardiomyocytes, also CaMKII is inhibited and all three targeted enzymes are known to promote maladaptive cardiomyocyte hypertrophy. Here, in accordance with lack of Calcineurin inhibition in vivo, we did not observe a relevant anti-hypertrophic effect despite inhibition of Ras and CaMKII. However, cardiomyocyte-specific TBC1D10C overexpressing transgenic mice exhibited enhanced longevity. Ejection fraction and exercise capacity were enhanced in transgenic mice, but shortening of isolated cardiomyocytes was not increased. This suggests longevity resulted from enhanced cardiac performance but independent of cardiomyocyte contractile force. In further search for mechanisms, a transcriptome-wide analysis revealed expressional changes in several genes pertinent to control of heart rate (HR) including Hcn4, Scn10a, Sema3a and Cacna2d2. Indeed, telemetric holter recordings demonstrated slower atrial conduction and significantly lower HR. Pharmacological reduction of HR was previously demonstrated to enhance survival in mice. Thus, in addition to inhibition of stress signaling, TBC1D10C economizes generation of cardiac output via HR reduction, enhancing exercise capacity and survival. TBC1D10C may be a new target for HR reduction and longevity.

13.
Arthropod Struct Dev ; 39(6): 453-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20696272

RESUMO

The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.


Assuntos
Evolução Biológica , Aranhas/anatomia & histologia , Aranhas/embriologia , Animais , Padronização Corporal , Extremidades/anatomia & histologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa