Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825718

RESUMO

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Assuntos
Silagem , Zea mays , Zea mays/genética , Genótipo , Clima Tropical , Fermentação , Amido , Carboidratos , Proteínas de Plantas , Paquistão , Agricultura
2.
Crit Rev Food Sci Nutr ; : 1-38, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846905

RESUMO

Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including ß-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.


Dairy products have consistently had protective effects in reducing the risk of colorectal cancer.Whey proteins have shown promise as candidates for the prevention and treatment of colorectal cancer.Whey proteins have a strong binding ability, enabling them to act as carriers of small molecules or drugs targeting colon cancer therapy.Their anti-inflammatory and anti-oxidant capacity may play a role in cancer prevention.Whey proteins could induce apoptosis and inhibit the proliferation and metastasis of tumor cells.

3.
BMC Genomics ; 22(1): 122, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596828

RESUMO

BACKGROUND: Heat stress (HS) is a major stress event in the life of an animal, with detrimental upshots in production and health. Long-non-coding RNAs (lncRNAs) play an important role in many biological processes by transcriptional regulation. However, no research has been reported on the characterization and functionality of lncRNAs in heat-stressed rats. RESULTS: We studied expression levels of lncRNAs in rats during HS, using strand-specific RNA sequencing. Six rats, three in each of Control (22 ± 1 °C) and H120 (42 °C for 120 min) experimental groups, were used to screen for lncRNAs in their liver and adrenal glands. Totally, 4498 and 7627 putative lncRNAs were identified in liver and adrenal glands of the Control and H120 groups, respectively. The majority of lncRNAs were relatively shorter and contained fewer exons than protein-coding transcripts. In total, 482 (174 up-regulated and 308 down-regulated) and 271 (126 up-regulated and 145 down-regulated) differentially-expressed lncRNAs (DElncRNAs, P < 0.05) were identified in the liver and adrenal glands of the Control and H120 groups, respectively. Furthermore, 1274, 121, and 73 target differentially-expressed genes (DEGs) in the liver were predicted to interact with DElncRNAs based on trans-/cis- and sequence similarity regulatory modes. Functional annotation analyses indicated that these DEGs were mostly significantly enriched in insulin signalling, myeloid leukaemia, and glucagon signalling pathways. Similarly, 437, 73 and 41 target DEGs in the adrenal glands were mostly significantly enriched in the cell cycle (trans-prediction) and lysosome pathways (cis-prediction). The DElncRNAs interacting with DEGs that encode heat shock proteins (HSPs) may play an important role in HS response, which include Hsf4, Dnaja1, Dnajb4, Hsph1 and Hspb1 in the liver, and Dnajb13 and Hspb8 in the adrenal glands. The strand-specific RNA sequencing findings were also further verified through RT-qPCR. CONCLUSIONS: This study is the first to provide a detailed characterization and functional analysis of expression levels of lncRNAs in liver and adrenal glands of heat-stressed rats, which provides basis for further studies on the biological functions of lncRNAs under heat stress in rats and other mammalian species.


Assuntos
RNA Longo não Codificante , Animais , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , RNA Longo não Codificante/genética , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA
4.
J Dairy Sci ; 104(4): 4146-4156, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33589266

RESUMO

The objective of this study was to investigate the short- and long-term effects of different feed presentations on feed sorting and rumen pH in weaned calves. Thirty-six weaned female calves at the age of 12 wk (78 d) were raised in pairs (18 pens; n = 6/treatment) and randomly exposed to 1 of 3 feed presentation treatments: (1) concentrate ration (CON, only exposed to concentrate); (2) separate ration (CH, exposed to concentrate and hay as separate components); and (3) mixed ration (Mix, exposed to a mixed diet containing 75% concentrate and 25% hay). After 4 wk (from d 78 to 105) on different feed presentations, all weaned calves were introduced to a novel total mixed ration (TMR) for another 12 wk (from d 106 to 189). Fresh feed and orts were sampled daily before (wk 12 to 15) and after (wk 16, 17, and 28) transitioning to a TMR diet for analysis of feed sorting. Rumen fluid was sampled in wk 12, 13, 15, 16, 17, and 28 to determine rumen pH. The performance of weaned calves was affected by the different feed presentations during the pre-changing period, such that calves fed CON had a lower dry matter intake (DMI) and average daily gain than calves fed CH and Mix diets. When calves were introduced to the Mix diet, they immediately developed a higher degree of sorting behavior against the long particle fractions. Upon transition to TMR, we did not observe any differences in the performance of calves. However, the sorting behavior established in Mix calves persisted and was similar to calves previously fed the CON diet, whereas the extent of feed sorting in calves initially fed CH was less compared with that in the other 2 treatments in wk 16 and 17. Before changing the diet was transitioned to a TMR, calves fed CON had a lower rumen pH than calves fed CH and Mix. Although rumen pH in all treatments increased to the same level after the diet changed, we observed a tendency toward lower rumen pH in calves fed Mix compared with calves fed CH at wk 17, which might have resulted from the higher degree of feed sorting in these calves. However, by the end of the experiment (wk 28), feed sorting and rumen pH were similar across all treatments. These results indicated a short-term effect of previous feed presentations on subsequent feed sorting and rumen pH, but in the long term disappeared.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Comportamento Alimentar , Feminino , Concentração de Íons de Hidrogênio , Desmame
5.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 483-492, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31994802

RESUMO

Perinatal period is the critical time in dairy cattle due to negative energy balance and high milk production stress. Being a key role in biosynthesis and methylation cycle, folic acid is considered essential for lactational and metabolic performance in dairy cattle. Thus, the current study was designed to evaluate the effect of folic acid supplementation on milk production phenotypic traits in periparturient cows. Transcriptomic screening was performed for milk production and metabolism-associated differentially expressed genes. The 123 cows having similar parity, weight and expected date of calving were randomly selected and divided into three groups; A (n = 41, folic acid 240 mg/500 kg cow/day), B (n = 40, FA 120 mg/500 kg cow/day) and C (Control, n = 42). Folic acid was supplemented for 21 days (14 days pre- and seven days post-calving), and three samples of blood lymphocytes were taken on day seven post-calving from each folic acid-treated and control group. In addition, the milk samples for each folic acid-treated group have been collected at 2nd, 3rd and 4th month of lactation. The increase in average milk yield noticed in group B were significantly (p-value < .05) higher than C and A. However, the data showed no noteworthy differences for milk fat and milk protein among the three groups. The transcriptomic analysis revealed that folic acid treatment regulated many key metabolic-related genes (DGAT2, ALOX5, LAP3, GPAT3, GGH, ALDOA, TKT) and pathways (glycolysis, folate biosynthesis, glutathione metabolism, etc.) in periparturient dairy cattle. It was concluded from the above findings that 120 mg/500 kg of folic acid quantity could be considered as a standard during the periparturient period to enhance the milk production performance of dairy cows. The transcriptomic profile revealed several metabolic and milk production-associated genes which could be a useful addition to the marker selection for the enhancement of metabolism and milk production of periparturient dairy cows.


Assuntos
Bovinos , Suplementos Nutricionais , Ácido Fólico/farmacologia , Lactação/efeitos dos fármacos , Leite , Animais , Relação Dose-Resposta a Droga , Feminino , Ácido Fólico/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Lactação/fisiologia , Gravidez
6.
Asian-Australas J Anim Sci ; 33(2): 203-211, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010979

RESUMO

OBJECTIVE: Staphylococcus aureus (S. aureus) is one of the major microorganisms responsible for subclinical mastitis in dairy cattle. The present study was designed with the aim to explore the DNA methylation patterns using the Fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) techniques in a S. aureus-infected mouse model. METHODS: A total of 12 out-bred ICR female mice ranging from 12 -13 weeks-old were selected to construct a mastitis model. F-MSAP analysis was carried out to detect fluctuations of DNA methylation between control group and S. aureus mastitis group. RESULTS: Visible changes were observed in white cell counts in milk, percentage of granulocytes (GRN %), percentage of lymphocytes (LYM %), CD4+/ CD8+ ratio (CD4+/ CD8+), and histopathology of mice pre and post-challenge with S. aureus. These findings showed the uniformity and suitability of the S. aureus-infected mouse model. A total of 369 fragments was amplified from udder tissue samples from the two groups (S. aureus-infected mastitis group and control group) using eight pairs of selective primers. Results indicated that the methylation level of mastitis mouse group was higher than that in the healthy group. In addition, NCK-associated protein 5 (Nckap5) and transposon MTD were identified to be differentially methylated through secondary PCR and sequencing in the mastitis group. These outcomes might play an important role in the development of S. aureus mastitis. CONCLUSION: Collectively, our study suggested that the methylation modification in Nckap5 and transposon MTD might be considered as epigenetic markers in resistance to S. aureus-infected mastitis and provided a new insight into S. aureus mastitis research in dairy industry and public health.

7.
Asian-Australas J Anim Sci ; 33(9): 1507-1519, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31010964

RESUMO

OBJECTIVE: The current research was aimed to profile the transcriptomic picture of the peripheral blood lymphocytes (PBLs) associated with immunity in Chinese Holsteins supplemented orally with coated folic acid during the periparturient period. METHODS: The total of 123 perinatal cows were selected for this study and divided into three groups; group A (n = 41, 240mg/ 500 kg cow/day), group B (n = 40, 120mg/ 500 kg cow/day) and group C (n = 42, 0mg/cow/day) based on the quantity of folic acid fed. Three samples of PBLs were selected from each folic acid treated group (High, Low, and Control) and RNA sequencing method was carried out for transcriptomic analysis. RESULTS: The analysis revealed that a higher number of genes and pathways were regulated in response to high and low folic acid supplementation compared to the controls. We reported the novel pathways (TNF signaling, Antigen processing and presentation, Staphylococcus aureus infection and NF-kappa B signaling pathways) and the key genes (e.g. CXCL10, TNFRSFIA, CD4, BOLA-DQB, NFKBIA, and TNFSF13) having great importance in immunity and anti-inflammation in the periparturient cows in response to coated folic acid treatment. CONCLUSION: Collectively, our study profiled first-time transcriptomic analysis of bovine lymphocytes and compared the involved cytokines, genes, and pathways between High vs. Control and Low vs. Control. Our data suggest that the low folic acid supplementation (120 mg/500 kg) could be a good choice to boost appropriate immunity and anti-inflammation as well as might being applied to the health improvement of perinatal dairy cows.

8.
J Dairy Res ; 86(4): 388-393, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31779717

RESUMO

Improving the production traits and resistance against mastitis in dairy cattle is a challenge for animal scientists across the globe. The present study was designed to investigate the genetic effects of single nucleotide polymorphisms (SNPs) in Janus kinase 2 (JAK2) and diacylglycerol acyltransferase (DGAT1) genes with production and mastitis-related traits. Four SNPs in JAK2 and one in DGAT1 were analyzed through Chinese Cow's SNPs Chip-I (CCSC-I) and genotyped in a population of 312 Chinese Holsteins. Our findings demonstrated that milk fat percentage, somatic cell count (SCC), somatic cell score (SCS), serum cytokines interleukin 6 (IL-6) and interferon gamma (IFN-γ) showed significant associations (P < 0.05) with at least one or more identified SNPs. Consequently, the analysis based on haplotypes amongst the SNPs in JAK2 revealed noteworthy (P < 0.05) association with SCC and IL-6. Collectively, our results verified the pleiotropic ability of detected SNPs in bovine JAK2 and DGAT1 for milk fat percentage as well as mastitis-related traits. The significant SNPs in both the genes could serve as powerful genetic markers to minimize mastitis risk. In addition, besides SCC and SCS, the IFN-γ and IL-6 could also be used as indicators of improved genetic resistance against mastitis.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Gorduras/química , Janus Quinase 2/metabolismo , Mastite Bovina/genética , Leite/química , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Diacilglicerol O-Aciltransferase/genética , Feminino , Predisposição Genética para Doença , Genótipo , Janus Quinase 2/genética , Lactação/genética , Lactação/fisiologia
9.
Antioxidants (Basel) ; 13(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539792

RESUMO

Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.

10.
Animals (Basel) ; 14(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396562

RESUMO

In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.

11.
Front Vet Sci ; 11: 1390304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898998

RESUMO

Introduction: Equid herpesvirus type 8 (EqHV-8) poses a significant threat to equine health, leading to miscarriages and respiratory diseases in horses and donkeys, and results in substantial economic losses in the donkey industry. Currently, there are no effective drugs or vaccines available for EqHV-8 infection control. Methods: In this study, we investigated the in vitro and in vivo antiviral efficacy of Blebbistatin, a myosin II ATPase inhibitor, against EqHV-8. Results: Our results demonstrated that Blebbistatin significantly inhibited EqHV-8 infection in Rabbit kidney (RK-13) and Madin-Darby Bovine Kidney (MDBK) cells in a concentration-dependent manner. Notably, Blebbistatin was found to disrupt EqHV-8 infection at the entry stage by modulating myosin II ATPase activity. Moreover, in vivo experiments revealed that Blebbistatin effectively reduced EqHV-8 replication and mitigated lung pathology in a mouse model. Conclusion: Collectively, these findings suggest that Blebbistatin holds considerable potential as an antiviral agent for the control of EqHV-8 infection, presenting a novel approach to addressing this veterinary challenge.

12.
Antioxidants (Basel) ; 13(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790702

RESUMO

Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. It poses a significant threat to the physiological function of reproductive cells. Factors such as xenobiotics and heat can worsen this stress, leading to cellular damage and apoptosis, ultimately decreasing reproductive efficiency. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays a crucial role in defending against oxidative stress and protecting reproductive cells via enhancing antioxidant responses. Dysregulation of Nrf2 signaling has been associated with infertility and suboptimal reproductive performance in mammals. Recent advancements in therapeutic interventions have underscored the critical role of Nrf2 in mitigating oxidative damage and restoring the functional integrity of reproductive cells. In this narrative review, we delineate the harmful effects of heat and xenobiotic-induced oxidative stress on reproductive cells and explain how Nrf2 signaling provides protection against these challenges. Recent studies have shown that activating the Nrf2 signaling pathway using various bioactive compounds can ameliorate heat stress and xenobiotic-induced oxidative distress and apoptosis in mammalian reproductive cells. By comprehensively analyzing the existing literature, we propose Nrf2 as a key therapeutic target for mitigating oxidative damage and apoptosis in reproductive cells caused by exposure to xenobiotic exposure and heat stress. Additionally, based on the synthesis of these findings, we discuss the potential of therapies focused on the Nrf2 signaling pathway to improve mammalian reproductive efficiency.

13.
Meat Sci ; 214: 109499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38677056

RESUMO

Methionine plays a vital role in protein synthesis, and regulation of antioxidant response in ruminants. This study aimed to assess the effects of dietary supplementation with N-acetyl-l-methionine (NALM), which serves a source of rumen-protected methionine, on growth performance, carcass traits, meat quality, and oxidative stability. Sixty Angus heifers (initial body weight = 408 ± 51.2 kg, 15-18 months) were stratified by body weight and randomly assigned to four dietary treatments: a control group (0% NALM), and experimental groups receiving diets containing 0.125%, 0.25%, and 0.50% NALM (dry matter (DM) basis), respectively. The experiment included a 2-week adaptation and a 22-week data and sample collection period. Results indicated that blood urea nitrogen in the plasma of the 0.25% NALM group was lower compared to the control and the 0.50% NALM groups (P = 0.02). The plasma methionine (P = 0.04), proline (P < 0.01), and tryptophan (P = 0.05) were higher in the 0.25% and 0.50% NALM groups, as well as the methionine and proline in the muscle of the 0.25% NALM group (P < 0.01). The muscle pH (P < 0.01) was increased by supplementing 0.25% and 0.50% NALM in diets but decreased the lactate (P < 0.01). The 0.25% NALM group also increased a* (P = 0.05), decreased L* (P = 0.05), drip loss (P = 0.01), and glycolytic potential in the muscle (P < 0.01). The total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and glutathione in muscle of 0.25% NALM group were higher than that of the control (P < 0.01), and the malondialdehyde and protein carbonyl were lower (P < 0.01). In conclusion, the dietary supplement with NALM improves meat quality by enhancing the antioxidant effect of lipids and proteins.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Metionina , Animais , Bovinos , Feminino , Ração Animal/análise , Metionina/administração & dosagem , Dieta/veterinária , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Carne Vermelha/análise , Antioxidantes , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal
14.
Animals (Basel) ; 14(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929421

RESUMO

Variation in coat color among equids has attracted significant interest in genetics and breeding research. The range of colors is primarily determined by the type, concentration, and distribution of melanin pigments, with the balance between eumelanin and pheomelanin influenced by numerous genetic factors. Advances in genomic and sequencing technologies have enabled the identification of several candidate genes that influence coat color, thereby clarifying the genetic basis of these diverse phenotypes. In this review, we concisely categorize coat coloration in horses and donkeys, focusing on the biosynthesis and types of melanin involved in pigmentation. Moreover, we highlight the regulatory roles of some key candidate genes, such as MC1R, TYR, MITF, ASIP, and KIT, in coat color variation. Moreover, the review explores how coat color relates to selective breeding and specific equine diseases, offering valuable insights for developing breeding strategies that enhance both the esthetic and health aspects of equine species.

15.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672366

RESUMO

DNA methylation represents a predominant epigenetic modification with broad implications in various biological functions. Its role is particularly significant in the process of collagen deposition, a fundamental aspect of dermal development in donkeys. Despite its critical involvement, the mechanistic insights into how DNA methylation influences collagen deposition in donkey skin remain limited. In this study, we employed whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) to investigate the epigenetic landscape and gene expression profiles in the dorsal skin tissues of Dezhou donkeys across three developmental stages: embryonic (YD), juvenile (2-year-old, MD), and mature (8-year-old, OD). Our analysis identified numerous differentially methylated genes that play pivotal roles in skin collagen deposition and overall skin maturation, including but not limited to COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, GLUL, SFRP2, FOSL1, SERPINE1, MMP1, MMP2, MMP9, and MMP13. Notably, we observed an inverse relationship between gene expression and DNA methylation proximal to transcription start sites (TSSs), whereas a direct correlation was detected in regions close to transcription termination sites (TTSs). Detailed bisulfite sequencing analyses of the COL1A1 promoter region revealed a low methylation status during the embryonic stage, correlating with elevated transcriptional activity and gene expression levels. Collectively, our findings elucidate key genetic markers associated with collagen deposition in the skin of Dezhou donkeys, underscoring the significant regulatory role of DNA methylation. This research work contributes to the foundational knowledge necessary for the genetic improvement and selective breeding of Dezhou donkeys, aiming to enhance skin quality attributes.

16.
Cell Metab ; 36(4): 725-744, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569470

RESUMO

Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Humanos , Promoção da Saúde , Estado Nutricional , Antibacterianos , Probióticos/farmacologia , Probióticos/uso terapêutico
17.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725448

RESUMO

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Assuntos
Antivirais , Heme Oxigenase-1 , Infecções por Herpesviridae , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Rutina , Transdução de Sinais , Rutina/farmacologia , Rutina/uso terapêutico , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Camundongos , Infecções por Herpesviridae/tratamento farmacológico , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antioxidantes/farmacologia , Linhagem Celular , Carga Viral/efeitos dos fármacos , Cavalos , Feminino , Proteínas de Membrana
18.
Animals (Basel) ; 13(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37684989

RESUMO

Donkeys (Equus asinus) play a pivotal role as essential livestock in arid and semi-arid regions, serving various purposes such as transportation, agriculture, and milk production. Despite their significance, donkey breeding has often been overlooked in comparison to other livestock species, resulting in limited genetic improvement programs. Preserving donkey genetic resources within each country necessitates the establishment of breed conservation programs, focusing on managing genetic diversity among populations. In recent years, significant strides have been made in sequencing and analyzing complete mitochondrial DNA (mtDNA) molecules in donkeys. Notably, numerous studies have honed in on the mitochondrial D-loop region, renowned for its remarkable variability and higher substitution rate within the mtDNA genome, rendering it an effective genetic marker for assessing genetic diversity in donkeys. Furthermore, genetic markers at the RNA/DNA level have emerged as indispensable tools for enhancing production and reproduction traits in donkeys. Traditional animal breeding approaches based solely on phenotypic traits, such as milk yields, weight, and height, are influenced by both genetic and environmental factors. To overcome these challenges, genetic markers, such as polymorphisms, InDel, or entire gene sequences associated with desirable traits in animals, have achieved widespread usage in animal breeding practices. These markers have proven increasingly valuable for facilitating the selection of productive and reproductive traits in donkeys. This comprehensive review examines the cutting-edge research on mitochondrial DNA as a tool for assessing donkey biodiversity. Additionally, it highlights the role of genetic markers at the DNA/RNA level, enabling the informed selection of optimal production and reproductive traits in donkeys, thereby driving advancements in donkey genetic conservation and breeding programs.

19.
Front Mol Biosci ; 10: 1121964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825203

RESUMO

Legumain (LGMN) has been demonstrated to be overexpressed not just in breast, prostatic, and liver tumor cells, but also in the macrophages that compose the tumor microenvironment. This supports the idea that LGMN is a pivotal protein in regulating tumor development, invasion, and dissemination. Targeting LGMN with siRNA or chemotherapeutic medicines and peptides can suppress cancer cell proliferation in culture and reduce tumor growth in vivo. Furthermore, legumain can be used as a marker for cancer detection and targeting due to its expression being significantly lower in normal cells compared to tumors or tumor-associated macrophages (TAMs). Tumor formation is influenced by aberrant expression of proteins and alterations in cellular architecture, but the tumor microenvironment is a crucial deciding factor. Legumain (LGMN) is an in vivo-active cysteine protease that catalyzes the degradation of numerous proteins. Its precise biological mechanism encompasses a number of routes, including effects on tumor-associated macrophage and neovascular endothelium in the tumor microenvironment. The purpose of this work is to establish a rationale for thoroughly investigating the function of LGMN in the tumor microenvironment and discovering novel tumor early diagnosis markers and therapeutic targets by reviewing the function of LGMN in tumor genesis and progression and its relationship with tumor milieu.

20.
Environ Sci Pollut Res Int ; 30(40): 92817-92829, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37493912

RESUMO

Globally agrochemicals are widely used in the agricultural sectors, posing potential eco-toxicological risks and disrupting various lifeforms including birds. Thus, the current work was conducted to compare the acute toxic impacts of pesticides (e.g., chlorpyrifos, acetamiprid, and lambda-cyhalothrin) on the pigeon's health. In total 50 adult pigeons were purchased from a local market where these pigeons were fed on pollution-free food. Post adaptation period (15 days), the pigeons were arbitrarily separated into five distinct groups after having been identified in this manner by chance (each group containing 10 pigeons). Control group (group 1) was not treated with any pesticide while the remaining groups (groups 2, 3, and 4) were treated with 0.25-mg/kg body weight of chlorpyrifos, acetamiprid, lambda-cyhalothrin, and a mixture of all three pesticides (group 5), respectively. After 36 days of exposure, the groups that had been exposed to the pesticide showed a significant (p < 0.05) increase in both the total number of platelets and the number of white blood cells (WBCs), in comparison to the control group. On the other hand, the groups that were exposed to the insecticides had significantly lower levels of red blood cells (RBCs), hemoglobin (Hb), and packed cell volume (PCV) (p < 0.05). The value of mean corpuscular volume (MCV) was significantly (p < 0.05) reduced in acetamiprid-exposed group, while a significant increase was observed in other pesticide-exposed groups. Obvious histopathological changes were observed in the tissues of control group and no such changes were reported by control group. Necrosis, pyknosis, lymphocyte infiltration, congestion of blood, dissolution of plasma membrane, and vacuolation were observed in the livers of pesticide-treated pigeons. The intestinal study showed the formation of goblet cells, villi rupturing, degeneration of serosa, necrosis, and pyknosis in treated groups. Renal alterations, dilation of renal tubules, reduction of glomerulus tissue, and edema were observed. This study manifests that the uncontrolled use of pesticides impairs ecosystems and poses a substantial health risk to wildlife and ultimately to human.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Animais , Humanos , Clorpirifos/toxicidade , Columbidae , Ecossistema , Inseticidas/toxicidade , Praguicidas/toxicidade , Necrose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa