Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Orbit ; 43(5): 566-575, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38687963

RESUMO

PURPOSE: The posterior orbit is a confined space, harbouring neurovascular structures, frequently distorted by tumours. Image-guided navigation (IGN) has the potential to allow accurate localisation of these lesions and structures, reducing collateral damage whilst achieving surgical objectives. METHODS: We assessed the feasibility, effectiveness and safety of using an electromagnetic IGN for posterior orbital tumour surgery via a comparative cohort study. Outcomes from cases performed with IGN were compared with a retrospective cohort of similar cases performed without IGN, presenting a descriptive and statistical comparative analysis. RESULTS: Both groups were similar in mean age, gender and tumour characteristics. IGN set-up and registration were consistently achieved without significant workflow disruption. In the IGN group, fewer lateral orbitotomies (6.7% IGN, 46% non-IGN), and more transcutaneous lid and transconjunctival incisions (93% IGN, 53% non-IGN) were performed (p = .009). The surgical objective was achieved in 100% of IGN cases, with no need for revision surgery (vs 23% revision surgery in non-IGN, p = .005). There was no statistically significant difference in surgical complications. CONCLUSION: The use of IGN was feasible and integrated into the orbital surgery workflow to achieve surgical objectives more consistently and allowed the use of minimal access approaches. Future multicentre comparative studies are needed to explore the potential of this technology further.


Assuntos
Estudos de Viabilidade , Neoplasias Orbitárias , Cirurgia Assistida por Computador , Humanos , Feminino , Masculino , Neoplasias Orbitárias/cirurgia , Neoplasias Orbitárias/diagnóstico por imagem , Pessoa de Meia-Idade , Cirurgia Assistida por Computador/métodos , Estudos Retrospectivos , Adulto , Idoso , Procedimentos Cirúrgicos Oftalmológicos/métodos , Tomografia Computadorizada por Raios X , Idoso de 80 Anos ou mais
2.
BMJ Open Ophthalmol ; 9(1)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575345

RESUMO

OBJECTIVE: Preclinical validation study to assess the feasibility and accuracy of electromagnetic image-guided systems (EM-IGS) in orbital surgery using high-fidelity physical orbital anatomy simulators. METHODS: EM-IGS platform, clinical software, navigation instruments and reference system (StealthStation S8, Medtronic) were evaluated in a mock operating theatre at the Royal Victoria Eye and Ear Hospital, a tertiary academic hospital in Dublin, Ireland. Five high-resolution 3D-printed model skulls were created using CT scans of five anonymised patients with an orbital tumour that previously had a successful orbital biopsy or excision. The ability of ophthalmic surgeons to achieve satisfactory system registration in each model was assessed. Subsequently, navigational accuracy was recorded using defined anatomical landmarks as ground truth. Qualitative feedback on the system was also attained. RESULTS: Three independent surgeons participated in the study, one junior trainee, one fellow and one consultant. Across models, more senior participants were able to achieve a smaller system-generated registration error in a fewer number of attempts. When assessing navigational accuracy, submillimetre accuracy was achieved for the majority of points (16 landmarks per model, per participant). Qualitative surgeon feedback suggested acceptability of the technology, although interference from mobile phones near the operative field was noted. CONCLUSION: This study suggests the feasibility and accuracy of EM-IGS in a preclinical validation study for orbital surgery using patient specific 3D-printed skulls. This preclinical study provides the foundation for clinical studies to explore the safety and effectiveness of this technology.


Assuntos
Cirurgia Assistida por Computador , Humanos , Órbita/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Software , Fenômenos Eletromagnéticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa