Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(5): 2562-2571, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922408

RESUMO

Organic photovoltaic (OPV) efficiencies continue to rise, raising their prospects for solar energy conversion. However, researchers have long considered how to suppress the loss of free carriers by recombination-poor diffusion and significant Coulombic attraction can cause electrons and holes to encounter each other at interfaces close to where they were photogenerated. Using femtosecond transient spectroscopies, we report the nanosecond grow-in of a large transient Stark effect, caused by nanoscale electric fields of ∼487 kV/cm between photogenerated free carriers in the device active layer. We find that particular morphologies of the active layer lead to an energetic cascade for charge carriers, suppressing pathways to recombination, which is ∼2000 times less than predicted by Langevin theory. This in turn leads to the buildup of electric charge in donor and acceptor domains-away from the interface-resistant to bimolecular recombination. Interestingly, this signal is only experimentally obvious in thick films due to the different scaling of electroabsorption and photoinduced absorption signals in transient absorption spectroscopy. Rather than inhibiting device performance, we show that devices up to 600 nm thick maintain efficiencies of >8% because domains can afford much higher carrier densities. These observations suggest that with particular nanoscale morphologies the bulk heterojunction can go beyond its established role in charge photogeneration and can act as a capacitor, where adjacent free charges are held away from the interface and can be protected from bimolecular recombination.

2.
Nanotechnology ; 29(23): 235203, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522420

RESUMO

In this work, a compact transport model has been developed for monolayer transition metal dichalcogenide (TMDC) channel MOSFET. The analytical model solves the Poisson's equation for the inversion charge density to get the electrostatic potential in the channel. Current is then calculated by solving the drift-diffusion equation. The model makes gradual channel approximation to simplify the solution procedure. The appropriate density of states obtained from the first principle density functional theory simulation has been considered to keep the model physically accurate for monolayer TMDC channel FET. The outcome of the model has been benchmarked against both experimental and numerical quantum simulation results with the help of a few fitting parameters. Using the compact model, detailed output and transfer characteristics of monolayer WSe2 FET have been studied, and various performance parameters have been determined. The study confirms excellent ON and OFF state performances of monolayer WSe2 FET which could be viable for the next generation high-speed, low power applications. Also, the proposed model has been extended to study the operation of a biosensor. A monolayer MoS2 channel based dielectric modulated FET is investigated using the compact model for detection of a biomolecule in a dry environment.


Assuntos
Técnicas Biossensoriais , Chalconas/química , Modelos Teóricos , Transistores Eletrônicos , Elementos de Transição/química , Eletricidade Estática
3.
Adv Mater ; 34(36): e2205309, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841176

RESUMO

High-performance inorganic-organic lead halide perovskite solar cells (PSCs) are often fabricated with a liquid additive such as dimethyl sulfoxide (DMSO), which retards crystallization and reduces roughness and pinholes in the perovskite layers. However, DMSO can be trapped during perovskite film formation and induce voids and undesired reaction byproducts upon later processing steps. Here, it is shown that the amount of residual DMSO can be reduced in as-spin-coated films significantly through use of preheated substrates, or a so-called hot-casting method. Hot casting increases the perovskite film thickness given the same concentration of solutions, which allows for reducing the perovskite solution concentration. By reducing the amount of DMSO in proportion to the concentration of perovskite precursors and using hot casting, it is possible to fabricate perovskite layers with improved perovskite-substrate interfaces by suppressing the formation of byproducts, which increase trap density and accelerate degradation of the perovskite layers. The best-performing PSCs exhibit a power conversion efficiency (PCE) of 23.4% (23.0% stabilized efficiency) under simulated solar illumination. Furthermore, encapsulated devices show considerably reduced post-burn-in decay, retaining 75% and 90% of their initial and post-burn-in efficiencies after 3000 h of operation with maximum power point tracking (MPPT) under high power of ultraviolet (UV)-containing continuous light exposure.

4.
J Phys Chem Lett ; 12(40): 9774-9782, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34595929

RESUMO

Enhanced delocalization is beneficial for absorbing molecules in organic solar cells, and in particular bilayer devices, where excitons face small diffusion lengths as a barrier to reaching the charge-generating donor-acceptor interface. As hybrid light-matter states, polaritons offer exceptional delocalization which could be used to improve the efficiency of bilayer organic photovoltaics. Polariton delocalization can aid in delivering excitons to the donor-acceptor interface, but the subsequent charge transfer event must compete with the fast decay of the polariton. To evaluate the viability of polaritons as tools to improve bilayer organic solar cells, we studied the decay of the lower polariton in three cavity systems: a donor only, a donor-acceptor bilayer, and a donor-acceptor blend. Using several spectroscopic techniques, we identified an additional decay pathway through charge transfer for the polariton in the bilayer cavity, demonstrating charge transfer from the polariton is fast enough to outcompete the decay to the ground state.

5.
J Phys Chem Lett ; 12(1): 537-545, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33378206

RESUMO

The morphology of organic semiconductors is critical to their function in optoelectronic devices and is particularly crucial in the donor-acceptor mixture that comprises the bulk heterojunction of organic solar cells. Here, energy landscapes can play integral roles in charge photogeneration, and recently have been shown to drive the accumulation of charge carriers away from the interface, resulting in the buildup of large nanoscale electric fields, much like a capacitor. In this work we combine morphological and spectroscopic data to outline the requirements for this interdomain charge accumulation, finding that this effect is driven by a three-phase morphology that creates an energetic cascade for charge carriers. By adjusting annealing conditions, we show that domain purity, but not size, is critical for an electro-absorption feature to grow-in. This demonstrates that the energy landscape around the interface shapes the movement of charges and that pure domains are required for charge carrier buildup that results in reduced recombination and large interdomain nanoscale electric fields.

6.
J Phys Chem Lett ; 11(23): 10219-10226, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206537

RESUMO

In an effort to gain a comprehensive picture of the interfacial states in bulk heterojunction solar cells, we provide a combined experimental-theoretical analysis of the energetics and dynamics of low-lying electronic charge-transfer (CT) states in donor:acceptor blends with a large frontier orbital energy offset. By varying the blend composition and temperature, we unravel the static and dynamic contributions to the disordered density of states (DOS) of the CT-state manifold and assess their recombination to the ground state. Namely, we find that static disorder (conformational and electrostatic) shapes the CT DOS and that fast nonradiative recombination crops the low-energy tail of the distribution probed by external quantum efficiency (EQE) measurements (thereby largely contributing to voltage losses). Our results then question the standard practice of extracting microscopic parameters such as exciton energy and energetic disorder from EQE.

7.
J Phys Chem Lett ; 11(7): 2667-2674, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32186878

RESUMO

Strong light-matter coupling is emerging as a fascinating way to tune optical properties and modify the photophysics of molecular systems. In this work, we studied a molecular chromophore under strong coupling with the optical mode of a Fabry-Perot cavity resonant to the first electronic absorption band. Using femtosecond pump-probe spectroscopy, we investigated the transient response of the cavity-coupled molecules upon photoexcitation resonant to the upper and lower polaritons. We identified an excited state absorption from upper and lower polaritons to a state at the energy of the second cavity mode. Quantum mechanical calculations of the many-molecule energy structure of cavity polaritons suggest assignment of this state as a two-particle polaritonic state with optically allowed transitions from the upper and lower polaritons. We provide new physical insight into the role of two-particle polaritonic states in explaining transient signatures in hybrid light-matter coupling systems consistent with analogous many-body systems.

8.
Adv Mater ; 31(2): e1805836, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412319

RESUMO

Hybrid organic-inorganic perovskite semiconductors have shown potential to develop into a new generation of light-emitting diode (LED) technology. Herein, an important design principle for perovskite LEDs is elucidated regarding optimal perovskite thickness. Adopting a thin perovskite layer in the range of 35-40 nm is shown to be critical for both device efficiency and stability improvements. Maximum external quantum efficiencies (EQEs) of 17.6% for Cs0.2 FA0.8 PbI2.8 Br0.2 , 14.3% for CH3 NH3 PbI3 (MAPbI3 ), 10.1% for formamidinium lead iodide (FAPbI3 ), and 11.3% for formamidinium lead bromide (FAPbBr3 )-based LEDs are demonstrated with optimized perovskite layer thickness. Optical simulations show that the improved EQEs source from improved light outcoupling. Furthermore, elevated device temperature caused by Joule heating is shown as an important factor contributing to device degradation, and that thin perovskite emitting layers maintain lower junction temperature during operation and thus demonstrate increased stability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa