Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834771

RESUMO

The SARS-CoV-2 betacoronavirus pandemic has claimed more than 6.5 million lives and, despite the development and use of COVID-19 vaccines, remains a major global public health problem. The development of specific drugs for the treatment of this disease remains a very urgent task. In the context of a repurposing strategy, we previously screened a library of nucleoside analogs showing different types of biological activity against the SARS-CoV-2 virus. The screening revealed compounds capable of inhibiting the reproduction of SARS-CoV-2 with EC50 values in the range of 20-50 µM. Here we present the design and synthesis of various analogs of the leader compounds, the evaluation of their cytotoxicity and antiviral activity against SARS-CoV-2 in cell cultures, as well as experimental data on RNA-dependent RNA polymerase inhibition. Several compounds have been shown to prevent the interaction between the SARS-CoV-2 RNA-dependent RNA polymerase and the RNA substrate, likely inhibiting virus replication. Three of the synthesized compounds have also been shown to inhibit influenza virus. The structures of these compounds can be used for further optimization in order to develop an antiviral drug.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Nucleosídeos/química , RNA Viral , Vacinas contra COVID-19/farmacologia , Antivirais/farmacologia , Replicação Viral , RNA Polimerase Dependente de RNA
2.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895100

RESUMO

A variety of ribo-, 2'-deoxyribo-, and 5'-norcarbocyclic derivatives of the 8-aza-7-deazahypoxanthine fleximer scaffolds were designed, synthesized, and screened for antibacterial activity. Both chemical and chemoenzymatic methods of synthesis for the 8-aza-7-deazainosine fleximers were compared. In the case of the 8-aza-7-deazahypoxanthine fleximer, the transglycosylation reaction proceeded with the formation of side products. In the case of the protected fleximer base, 1-(4-benzyloxypyrimidin-5-yl)pyrazole, the reaction proceeded selectively with formation of only one product. However, both synthetic routes to realize the fleximer ribonucleoside (3) worked with equal efficiency. The new compounds, as well as some 8-aza-7-deazapurine nucleosides synthesized previously, were studied against Gram-positive and Gram-negative bacteria and M. tuberculosis. It was shown that 1-(ß-D-ribofuranosyl)-4-(2-aminopyridin-3-yl)pyrazole (19) and 1-(2',3',4'-trihydroxycyclopent-1'-yl)-4-(pyrimidin-4(3H)-on-5-yl)pyrazole (9) were able to inhibit the growth of M. smegmatis mc2 155 by 99% at concentrations (MIC99) of 50 and 13 µg/mL, respectively. Antimycobacterial activities were revealed for 4-(4-aminopyridin-3-yl)-1H-pyrazol (10) and 1-(4'-hydroxy-2'-cyclopenten-1'-yl)-4-(4-benzyloxypyrimidin-5-yl)pyrazole (6). At concentrations (MIC99) of 40 and 20 µg/mL, respectively, the compounds resulted in 99% inhibition of M. tuberculosis growth.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Nucleosídeos/farmacologia , Nucleosídeos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Pirazóis/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
3.
Molecules ; 28(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36770593

RESUMO

The great interest in studying the structure of human purine nucleoside phosphorylase (hPNP) and the continued search for effective inhibitors is due to the importance of the enzyme as a target in the therapy of T-cell proliferative diseases. In addition, hPNP inhibitors are used in organ transplant surgeries to provide immunodeficiency during and after the procedure. Previously, we showed that members of the well-known fleximer class of nucleosides are substrates of E. coli PNP. Fleximers have great promise as they have exhibited significant biological activity against a number of viruses of pandemic concern. Herein, we describe the synthesis and inhibition studies of a series of new fleximer compounds against hPNP and discuss their possible binding mode with the enzyme. At a concentration of 2 mM for the flex-7-deazapurines 1-4, a decrease in enzymatic activity by more than 50% was observed. 4-Amino-5-(1H-pyrrol-3-yl)pyridine 2 was the best inhibitor, with a Ki = 0.70 mM. Docking experiments have shown that ligand 2 is localized in the selected binding pocket Glu201, Asn243 and Phe200. The ability of the pyridine and pyrrole fragments to undergo rotation around the C-C bond allows for multiple binding modes in the active site of hPNP, which could provide several plausible bioactive conformations.


Assuntos
Escherichia coli , Purina-Núcleosídeo Fosforilase , Humanos , Purina-Núcleosídeo Fosforilase/química , Escherichia coli/metabolismo , Purinas/farmacologia , Nucleosídeos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499608

RESUMO

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.


Assuntos
COVID-19 , Perileno , Humanos , SARS-CoV-2/fisiologia , Nucleosídeos/farmacologia , RNA , Perileno/farmacologia , Antivirais/farmacologia
5.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566215

RESUMO

Pyrimidine nucleoside analogues are widely used to treat infections caused by the human immunodeficiency virus (HIV) and DNA viruses from the herpes family. It has been shown that 5-substituted uracil derivatives can inhibit HIV-1, herpes family viruses, mycobacteria and other pathogens through various mechanisms. Among the 5-substituted pyrimidine nucleosides, there are not only the classical nucleoside inhibitors of the herpes family viruses, 2'-deoxy-5-iodocytidine and 5-bromovinyl-2'-deoxyuridine, but also derivatives of 1-(benzyl)-5-(phenylamino)uracil, which proved to be non-nucleoside inhibitors of HIV-1 and EBV. It made this modification of nucleoside analogues very promising in connection with the emergence of new viruses and the crisis of drug resistance when the task of creating effective antiviral agents of new types that act on other targets or exhibit activity by other mechanisms is very urgent. In this paper, we present the design, synthesis and primary screening of the biological activity of new nucleoside analogues, namely, 5'-norcarbocyclic derivatives of substituted 5-arylamino- and 5-aryloxyuracils, against RNA viruses.


Assuntos
HIV-1 , Herpesviridae , Nucleosídeos de Pirimidina , Antivirais/farmacologia , Humanos , Nucleosídeos/farmacologia , Nucleosídeos de Pirimidina/farmacologia , Relação Estrutura-Atividade , Uracila
6.
Org Biomol Chem ; 19(34): 7379-7389, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198312

RESUMO

Nucleoside analogues have long served as key chemotherapeutic drugs for the treatment of viral infections and cancers. Problems associated with the development of drug resistance have led to a search for the design of nucleosides capable of bypassing point mutations in the target enzyme's binding site. As a possible answer to this, the Seley-Radtke group developed a flexible nucleoside scaffold (fleximers), where the heterocyclic purine base is split into its two components, i.e. pyrimidine and imidazole. Herein, we present a series of new pyrazole-containing flex-bases and the corresponding fleximer analogues of 8-aza-7-deaza nucleosides. Subsequent studies found that pyrazole-containing flex-bases are substrates of purine nucleoside phosphorylase (PNP). We have compared the chemical synthesis of fleximers and enzymatic approaches with both isolated enzymes and the use of E. coli cells overproducing PNP. The latter provided stereochemically pure pyrazole-containing ß-d-ribo- and ß-d-2'-deoxyribo-fleximers and are beneficial in terms of environmental issues, are more economical, and streamline the steps required from a chemical approach. The reaction is carried out in water, avoiding hazardous chemicals, and the products are isolated by ion-exchange chromatography using water/ethanol mixtures for elution. Moreover, the target nucleosides were obtained on a multi-milligram scale with >97-99% purity, and the reactions can be easily scaled up.


Assuntos
Adenosina
7.
Molecules ; 25(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717979

RESUMO

Widespread latent herpes viral infections within a population can lead to the development of co-infections in HIV-infected patients. These infections are not particularly dangerous for healthy individuals and often occur with minimal symptoms, but for those who are immunocompromised, these infections can accelerate the acute phase of HIV infection and AIDS. Thus, the idea of designing compounds that could combine activity against HIV and co-infections would seem promising. In that regard, eleven compounds were synthesized that represent conjugates of non-nucleoside HIV reverse transcriptase inhibitors and nucleoside inhibitors of the herpes family viruses with the hope that these novel heterodimers will result in dual activity against HIV and concomitant herpes virus infections.


Assuntos
Antivirais/síntese química , Transcriptase Reversa do HIV/antagonistas & inibidores , Uracila/química , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Desenho de Fármacos , HIV/efeitos dos fármacos , HIV/enzimologia , HIV/fisiologia , Herpesviridae/efeitos dos fármacos , Herpesviridae/fisiologia , Humanos , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Nucleosídeos/farmacologia , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Latência Viral/efeitos dos fármacos
8.
Molecules ; 24(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546633

RESUMO

Carbocyclic nucleosides have long played a role in antiviral, antiparasitic, and antibacterial therapies. Recent results from our laboratories from two structurally related scaffolds have shown promising activity against both Mycobacterium tuberculosis and several parasitic strains. As a result, a small structure activity relationship study was designed to further probe their activity and potential. Their synthesis and the results of the subsequent biological activity are reported herein.


Assuntos
Antiprotozoários/farmacologia , Nucleosídeos/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Antiprotozoários/química , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleosídeos/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332788

RESUMO

Here we report the synthesis and biological activity of new 5'-norcarbocyclic derivatives of bicyclic pyrrolo- and furano[2,3-d]pyrimidines with different substituents in the heterocyclic ring. Lead compound 3i, containing 6-pentylphenyl substituent, displays inhibitory activity with respect to a number of tumor cells with a moderate selectivity index value. Compound 3i induces cell death by the apoptosis pathway with the dissipation of mitochondrial potential.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Células A549 , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade
10.
Molecules ; 23(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477147

RESUMO

A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 µg/mL (mc²155) and a MIC99 of 6.7⁻67 µg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 µg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 µg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 µg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 µg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura , Relação Estrutura-Atividade , Uracila/análogos & derivados , Uracila/química , Uracila/farmacologia
11.
Bioorg Med Chem Lett ; 27(14): 3081-3086, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571825

RESUMO

Carbocyclic nucleoside analogues have a distinguished history as anti-infectious agents, including key antiviral agents. Toxicity was initially a concern but this was reduced by the introduction of 5'-nor variants. Here, we report the result of our preliminary screening of a series of 5'-norcarbocyclic uridine analogues against protozoan parasites, specifically the major pathogens Leishmania mexicana and Trypanosoma brucei. The series displayed antiparasite activity in the low to mid-micromolar range and establishes a preliminary structure-activity relationship, with the 4',N3-di-(3,5-dimethylbenzoyl)-substituted analogues showing the most prominent activity. Utilizing an array of specially adapted cell lines, it was established that this series of analogues likely act through a common target. Moreover, the strong correlation between the trypanocidal and anti-leishmanial activities indicates that this mechanism is likely shared between the two species. EC50 values were unaffected by the disabling of pyrimidine biosynthesis in T. brucei, showing that these uridine analogues do not act directly on the enzymes of pyrimidine nucleotide metabolism. The lack of cross-resistance with 5-fluorouracil, also establishes that the carbocyclic analogues are not imported through the known uracil transporters, thus offering forth new insights for this class of nucleosides. The lack of cross-resistance with current trypanocides makes this compound class interesting for further exploration.


Assuntos
Antiprotozoários/química , Nucleosídeos de Pirimidina/química , Antiprotozoários/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Fluoruracila/farmacologia , Leishmania mexicana/efeitos dos fármacos , Nucleosídeos de Pirimidina/farmacologia , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
12.
Bioorg Med Chem ; 24(11): 2476-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112451

RESUMO

A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/química
13.
Nanomedicine ; 12(8): 2405-2413, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27456163

RESUMO

Benzophenone-uracil (BPU) scaffold-derived candidate compounds are efficient non-nucleoside reverse transcriptase inhibitors (NNRTI) with extremely low solubility in water. We proposed to use hydrophobic core (methoxypolyethylene glycol-polylysine) graft copolymer (HC-PGC) technology for stabilizing nanoparticle-based formulations of BPU NNRTI in water. Co-lyophilization of NNRTI/HC-PGC mixtures resulted in dry powders that could be easily reconstituted with the formation of 150-250 nm stable nanoparticles (NP). The NP and HC-PGC were non-toxic in experiments with TZM-bl reporter cells. Nanoparticles containing selected efficient candidate Z107 NNRTI preserved the ability to inhibit HIV-1 reverse transcriptase polymerase activities with no appreciable change of EC50. The formulation with HC-PGC bearing residues of oleic acid resulted in nanoparticles that were nearly identical in anti-HIV-1 potency when compared to Z107 solutions in DMSO (EC50=7.5±3.8 vs. 8.2±5.1 nM). Therefore, hydrophobic core macromolecular stabilizers form nanoparticles with insoluble NNRTI while preserving the antiviral activity of the drug cargo.


Assuntos
Infecções por HIV/tratamento farmacológico , Nanopartículas , Inibidores da Transcriptase Reversa , Fármacos Anti-HIV , Antivirais , Sistemas de Liberação de Medicamentos , Transcriptase Reversa do HIV , HIV-1
14.
Bioorg Med Chem ; 23(21): 7035-44, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443550

RESUMO

The need for novel therapeutic options to fight herpesvirus infections still persists. Herein we report the design, synthesis and antiviral evaluation of a new family of non-nucleoside antivirals, derived from 1-[ω-(4-bromophenoxy)alkyl]uracil derivatives--previously reported inhibitors of human cytomegalovirus (HCMV). Introduction of the N-(4-phenoxyphenyl)acetamide side chain at N(3) increased their potency and widened activity spectrum. The most active compounds in the series exhibit submicromolar activity against different viral strains of HCMV and varicella zoster virus (VZV) replication in HEL cell cultures. Inactivity against other DNA and RNA viruses, including herpes simplex virus 1/2, points to a novel mechanism of antiviral action.


Assuntos
Acetamidas/química , Antivirais/química , Citomegalovirus/fisiologia , Herpesvirus Humano 3/fisiologia , Uracila/química , Acetamidas/síntese química , Acetamidas/toxicidade , Antivirais/síntese química , Antivirais/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/fisiologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
15.
Bioorg Med Chem ; 23(5): 1069-81, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25638501

RESUMO

In order to identify novel nonnucleoside inhibitors of HIV-1 reverse transcriptase two series of amide-containing uracil derivatives were designed as hybrids of two scaffolds of previously reported inhibitors. Subsequent biological evaluation confirmed acetamide uracil derivatives 15a-k as selective micromolar NNRTIs with a first generation-like resistance profile. Molecular modeling of the most active compounds 15c and 15i was employed to provide insight on their inhibitory properties and direct future design efforts.


Assuntos
Acetanilidas/química , Fármacos Anti-HIV/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Uracila/análogos & derivados , Fármacos Anti-HIV/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Inibidores da Transcriptase Reversa/química
16.
Front Chem ; 12: 1448747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148665

RESUMO

S-Adenosyl-l-methionine (SAM)-mediated methylation of biomolecules controls their function and regulates numerous vital intracellular processes. Analogs of SAM with a reporter group in place of the S-methyl group are widely used to study these processes. However, many of these analogs are chemically unstable that largely limits their practical application. We have developed a new compound, SAM-P H , which contains an H-phosphinic group (-P(O)(H)OH) instead of the SAM carboxylic group. SAM-P H is significantly more stable than SAM, retains functional activity in catechol-O-methyltransferase and methyltransferase WBSCR27 reactions. The last is associated with Williams-Beuren syndrome. Rac-SAM-P H was synthesized chemically, while (R,S)-SAM-P H and its analogs were prepared enzymatically either from H-phosphinic analogs of methionine (Met-PH) or H-phosphinic analog of S-adenosyl-l-homocysteine (SAH-P H ) using methionine adenosyltransferase 2A or halide methyltransferases, respectively. SAH-P H undergoes glycoside bond cleavage in the presence of methylthioadenosine nucleosidase like natural SAH. Thus, SAM-P H and its analogs are promising new tools for investigating methyltransferases and incorporating reporter groups into their substrates.

17.
Biomolecules ; 14(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39062512

RESUMO

Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.


Assuntos
Escherichia coli , Purina-Núcleosídeo Fosforilase , Purina-Núcleosídeo Fosforilase/metabolismo , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Glicosilação , Escherichia coli/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Domínio Catalítico , Nucleosídeos/química , Nucleosídeos/metabolismo , Modelos Moleculares
18.
Bioorg Med Chem ; 21(5): 1150-8, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357038

RESUMO

A series of phenyloxyethyl and cinnamyl derivatives of substituted uracils were synthesized and found to exhibit potent activity against HIV-RT and HIV replication in cell culture. In general, the cinnamyl derivatives proved superior to the phenyloxyethyl derivatives, however 1-[2-(4-methylphenoxy)ethyl]-3-(3,5-dimethylbenzyl)uracil (19) exhibited the highest activity (EC(50)=0.27 µM) thus confirming that the 3-benzyluracil fragment in the NNRTI structure can be regarded as a functional analogue of the benzophenone pharmacophore typically found in NNRTIs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Inibidores da Transcriptase Reversa/química , Uracila/análogos & derivados , Sítios de Ligação , Linhagem Celular , Cinamatos/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Mutação , Estrutura Terciária de Proteína , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacologia , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/farmacologia
19.
Bioorg Med Chem ; 21(14): 4151-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23743443

RESUMO

HCMV infection represents a life-threatening condition for immunocompromised patients and newborn infants and novel anti-HCMV agents are clearly needed. In this regard, a series of 1-[ω-(phenoxy)alkyl]uracil derivatives were synthesized and examined for antiviral properties. Compounds 17, 20, 24 and 28 were found to exhibit highly specific and promising inhibitory activity against HCMV replication in HEL cell cultures with EC50 values within 5.5-12µM range. Further studies should be undertaken to elucidate the mechanism of action of these compounds and the structure-activity relationship for the linker region.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Receptores Virais/efeitos dos fármacos , Uracila/síntese química , Uracila/farmacologia , Antivirais/química , Células Cultivadas , Humanos , Relação Estrutura-Atividade , Uracila/química , Replicação Viral/efeitos dos fármacos
20.
Tetrahedron Lett ; 54(6): 576-578, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32287444

RESUMO

A series of heterocyclic compounds were designed as potential nonnucleoside HIV reverse transcriptase inhibitors. Although the compounds ultimately proved inactive against HIV, during the course of the synthesis, a new and highly facile method to realize N-phenylacetamides was developed. Notably, the new route avoids the intractable workups and byproducts previously reported procedures have been associated with, thereby making this approach highly attractive to adaptation with other heterocyclics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa