Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868189

RESUMO

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Íntrons , Diferenciação Celular , Inativação Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase
2.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
3.
Blood ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728575

RESUMO

It has been known for over half a century that humans produce different forms of hemoglobin, a tetramer of α- and ß-like hemoglobin chains, throughout ontogeny. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult ß-globin genes, such as sickle cell disease and ß-thalassemia manifest themselves as production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here we survey recent developments, spurred by the discovery of CRISPR tools that enabled for the first time high throughput genetic screens for new molecules that impact the fetal to adult hemoglobin switch. Numerous opportunities for therapeutic intervention thus came to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.

4.
Blood ; 143(19): 1980-1991, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38364109

RESUMO

ABSTRACT: The switch from fetal hemoglobin (γ-globin, HBG) to adult hemoglobin (ß-globin, HBB) gene transcription in erythroid cells serves as a paradigm for a complex and clinically relevant developmental gene regulatory program. We previously identified HIC2 as a regulator of the switch by inhibiting the transcription of BCL11A, a key repressor of HBG production. HIC2 is highly expressed in fetal cells, but the mechanism of its regulation is unclear. Here we report that HIC2 developmental expression is controlled by microRNAs (miRNAs), as loss of global miRNA biogenesis through DICER1 depletion leads to upregulation of HIC2 and HBG messenger RNA. We identified the adult-expressed let-7 miRNA family as a direct posttranscriptional regulator of HIC2. Ectopic expression of let-7 in fetal cells lowered HIC2 levels, whereas inhibition of let-7 in adult erythroblasts increased HIC2 production, culminating in decommissioning of a BCL11A erythroid enhancer and reduced BCL11A transcription. HIC2 depletion in let-7-inhibited cells restored BCL11A-mediated repression of HBG. Together, these data establish that fetal hemoglobin silencing in adult erythroid cells is under the control of a miRNA-mediated inhibitory pathway (let-7 ⊣ HIC2 ⊣ BCL11A ⊣ HBG).


Assuntos
Hemoglobina Fetal , Fatores de Transcrição Kruppel-Like , MicroRNAs , Proteínas Repressoras , Humanos , Globinas beta/genética , Globinas beta/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Eritroblastos/metabolismo , Eritroblastos/citologia , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transcrição Gênica
5.
Blood ; 141(22): 2756-2770, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893455

RESUMO

The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and ß-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.


Assuntos
Hemoglobina Fetal , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Hemoglobina Fetal/genética , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
6.
Cell ; 135(5): 960-73, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041756

RESUMO

To explore how gene products, required for the initiation of synaptic growth, move from the cell body of the sensory neuron to its presynaptic terminals, and from the cell body of the motor neuron to its postsynaptic dendritic spines, we have investigated the anterograde transport machinery in both the sensory and motor neurons of the gill-withdrawal reflex of Aplysia. We found that the induction of long-term facilitation (LTF) by repeated applications of serotonin, a modulatory transmitter released during learning in Aplysia, requires upregulation of kinesin heavy chain (KHC) in both pre- and postsynaptic neurons. Indeed, upregulation of KHC in the presynaptic neurons alone is sufficient for the induction of LTF. However, KHC is not required for the persistence of LTF. Thus, in addition to transcriptional activation in the nucleus and local protein synthesis at the synapse, our studies have identified a third component critical for long-term learning-related plasticity: the coordinated upregulation of kinesin-mediated transport.


Assuntos
Aplysia/fisiologia , Cinesinas/fisiologia , Neurônios/fisiologia , Animais , Brânquias/fisiologia , Plasticidade Neuronal , Sinapses/fisiologia , Regulação para Cima
7.
Blood ; 135(24): 2121-2132, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32299090

RESUMO

Reactivation of fetal hemoglobin remains a critical goal in the treatment of patients with sickle cell disease and ß-thalassemia. Previously, we discovered that silencing of the fetal γ-globin gene requires the erythroid-specific eIF2α kinase heme-regulated inhibitor (HRI), suggesting that HRI might present a pharmacologic target for raising fetal hemoglobin levels. Here, via a CRISPR-Cas9-guided loss-of-function screen in human erythroblasts, we identify transcription factor ATF4, a known HRI-regulated protein, as a novel γ-globin regulator. ATF4 directly stimulates transcription of BCL11A, a repressor of γ-globin transcription, by binding to its enhancer and fostering enhancer-promoter contacts. Notably, HRI-deficient mice display normal Bcl11a levels, suggesting species-selective regulation, which we explain here by demonstrating that the analogous ATF4 motif at the murine Bcl11a enhancer is largely dispensable. Our studies uncover a linear signaling pathway from HRI to ATF4 to BCL11A to γ-globin and illustrate potential limits of murine models of globin gene regulation.


Assuntos
Fator 4 Ativador da Transcrição/genética , Hemoglobina Fetal/genética , Proteínas Repressoras/genética , eIF-2 Quinase/genética , Anemia Falciforme/sangue , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Elementos Facilitadores Genéticos , Eritroblastos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Especificidade da Espécie , Talassemia beta/sangue , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/biossíntese , gama-Globinas/genética
8.
Blood ; 135(22): 1957-1968, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32268371

RESUMO

Reversing the developmental switch from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2ß2) is an important therapeutic approach in sickle cell disease (SCD) and ß-thalassemia. In healthy individuals, SCD patients, and patients treated with pharmacologic HbF inducers, HbF is present only in a subset of red blood cells known as F cells. Despite more than 50 years of observations, the cause for this heterocellular HbF expression pattern, even among genetically identical cells, remains unknown. Adult F cells might represent a reversion of a given cell to a fetal-like epigenetic and transcriptional state. Alternatively, isolated transcriptional or posttranscriptional events at the γ-globin genes might underlie heterocellularity. Here, we set out to understand the heterogeneity of HbF activation by developing techniques to purify and profile differentiation stage-matched late erythroblast F cells and non-F cells (A cells) from the human HUDEP2 erythroid cell line and primary human erythroid cultures. Transcriptional and proteomic profiling of these cells demonstrated very few differences between F and A cells at the RNA level either under baseline conditions or after treatment with HbF inducers hydroxyurea or pomalidomide. Surprisingly, we did not find differences in expression of any known HbF regulators, including BCL11A or LRF, that would account for HbF activation. Our analysis shows that F erythroblasts are not significantly different from non-HbF-expressing cells and that the primary differences likely occur at the transcriptional level at the ß-globin locus.


Assuntos
Eritroblastos/metabolismo , Hemoglobina Fetal/biossíntese , Hemoglobina A/metabolismo , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/genética , Linhagem Celular , Separação Celular/métodos , Células Cultivadas , Eritroblastos/classificação , Eritroblastos/efeitos dos fármacos , Células Eritroides/classificação , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Perfilação da Expressão Gênica , Hemoglobina A/genética , Humanos , Hidroxiureia/farmacologia , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacologia
9.
Curr Opin Hematol ; 28(3): 164-170, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631783

RESUMO

PURPOSE OF REVIEW: Small amounts of fetal hemoglobin can be expressed in a subset of adult red blood cells called F-cells. This review examines the potential mechanisms and clinical implications of the heterogeneity of fetal hemoglobin expression. RECENT FINDINGS: Although the heterocellular nature of fetal hemoglobin expression in adult red blood cells has been noted for over 70 years, the molecular basis of this phenomenon has been unclear. Recent discoveries of novel regulators of fetal hemoglobin as well as technological advances have shed new light on these cells. SUMMARY: Fetal hemoglobin reactivation in adult red blood cells through genetic or pharmacological approaches can involve both increasing the number of F-cells and cellular fetal hemoglobin content. New technologies enable the study and eventually the improvement of these parameters in patients with sickle cell disease and ß-thalassemia.


Assuntos
Eritrócitos/metabolismo , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Heterogeneidade Genética , Adulto , Fatores Etários , Anemia Falciforme/sangue , Anemia Falciforme/diagnóstico , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Eritrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Talassemia beta/sangue , Talassemia beta/diagnóstico , Talassemia beta/genética , Talassemia beta/terapia
10.
Genes Dev ; 24(15): 1620-33, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20679398

RESUMO

The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress to cause profound anemia in zebrafish embryos. At least some protective activities of miR-451 stem from its ability to directly suppress production of 14-3-3zeta, a phospho-serine/threonine-binding protein that inhibits nuclear accumulation of transcription factor FoxO3, a positive regulator of erythroid anti-oxidant genes. Thus, in miR-144/451(-/-) erythroblasts, 14-3-3zeta accumulates, causing partial relocalization of FoxO3 from nucleus to cytoplasm with dampening of its transcriptional program, including anti-oxidant-encoding genes Cat and Gpx1. Supporting this mechanism, overexpression of 14-3-3zeta in erythroid cells and fibroblasts inhibits nuclear localization and activity of FoxO3. Moreover, shRNA suppression of 14-3-3zeta protects miR-144/451(-/-) erythrocytes against peroxide-induced destruction, and restores catalase activity. Our findings define a novel miRNA-regulated pathway that protects erythrocytes against oxidant stress, and, more generally, illustrate how a miRNA can influence gene expression by altering the activity of a key transcription factor.


Assuntos
Proteínas 14-3-3/metabolismo , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Estresse Oxidativo , Proteínas 14-3-3/genética , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Catalase/metabolismo , Células Eritroides/enzimologia , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , MicroRNAs/genética , Alinhamento de Sequência , Deleção de Sequência/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Blood ; 121(16): 3228-36, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23426945

RESUMO

The secreted protein CCBE1 is required for lymphatic vessel growth in fish and mice, and mutations in the CCBE1 gene cause Hennekam syndrome, a primary human lymphedema. Here we show that loss of CCBE1 also confers severe anemia in midgestation mouse embryos due to defective definitive erythropoiesis. Fetal liver erythroid precursors of Ccbe1 null mice exhibit reduced proliferation and increased apoptosis. Colony-forming assays and hematopoietic reconstitution studies suggest that CCBE1 promotes fetal liver erythropoiesis cell nonautonomously. Consistent with these findings, Ccbe1(lacZ) reporter expression is not detected in hematopoietic cells and conditional deletion of Ccbe1 in hematopoietic cells does not confer anemia. The expression of the erythropoietic factors erythropoietin and stem cell factor is preserved in CCBE1 null embryos, but erythroblastic island (EBI) formation is reduced due to abnormal macrophage function. In contrast to the profound effects on fetal liver erythropoiesis, postnatal deletion of Ccbe1 does not confer anemia, even under conditions of erythropoietic stress, and EBI formation is normal in the bone marrow of adult CCBE1 knockout mice. Our findings reveal that CCBE1 plays an essential role in regulating the fetal liver erythropoietic environment and suggest that EBI formation is regulated differently in the fetal liver and bone marrow.


Assuntos
Anemia/embriologia , Proteínas de Ligação ao Cálcio/genética , Eritropoese , Feto/metabolismo , Fígado/metabolismo , Proteínas Supressoras de Tumor/genética , Anemia/genética , Anemia/metabolismo , Anemia/patologia , Animais , Medula Óssea/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Perda do Embrião/genética , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Eritroblastos/citologia , Eritroblastos/metabolismo , Eritroblastos/patologia , Eritropoetina/genética , Eritropoetina/metabolismo , Feto/patologia , Deleção de Genes , Fígado/patologia , Sistema Linfático/embriologia , Camundongos , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
J Biol Chem ; 288(27): 19986-20001, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696640

RESUMO

α-Hemoglobin (αHb)-stabilizing protein (AHSP) is a molecular chaperone that assists hemoglobin assembly. AHSP induces changes in αHb heme coordination, but how these changes are facilitated by interactions at the αHb·AHSP interface is not well understood. To address this question we have used NMR, x-ray absorption spectroscopy, and ligand binding measurements to probe αHb conformational changes induced by AHSP binding. NMR chemical shift analyses of free CO-αHb and CO-αHb·AHSP indicated that the seven helical elements of the native αHb structure are retained and that the heme Fe(II) remains coordinated to the proximal His-87 side chain. However, chemical shift differences revealed alterations of the F, G, and H helices and the heme pocket of CO-αHb bound to AHSP. Comparisons of iron-ligand geometry using extended x-ray absorption fine structure spectroscopy showed that AHSP binding induces a small 0.03 Å lengthening of the Fe-O2 bond, explaining previous reports that AHSP decreases αHb O2 affinity roughly 4-fold and promotes autooxidation due primarily to a 3-4-fold increase in the rate of O2 dissociation. Pro-30 mutations diminished NMR chemical shift changes in the proximal heme pocket, restored normal O2 dissociation rate and equilibrium constants, and reduced O2-αHb autooxidation rates. Thus, the contacts mediated by Pro-30 in wild-type AHSP promote αHb autooxidation by introducing strain into the proximal heme pocket. As a chaperone, AHSP facilitates rapid assembly of αHb into Hb when ßHb is abundant but diverts αHb to a redox resistant holding state when ßHb is limiting.


Assuntos
Proteínas Sanguíneas/química , Hemoglobina A/química , Ferro/química , Chaperonas Moleculares/química , Oxigênio/química , Oxiemoglobinas/química , Sítios de Ligação , Proteínas Sanguíneas/metabolismo , Hemoglobina A/metabolismo , Humanos , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Estrutura Secundária de Proteína
13.
Blood ; 119(22): 5265-75, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22427201

RESUMO

Cells remove unstable polypeptides through protein quality-control (PQC) pathways such as ubiquitin-mediated proteolysis and autophagy. In the present study, we investigated how these pathways are used in ß-thalassemia, a common hemoglobinopathy in which ß-globin gene mutations cause the accumulation and precipitation of cytotoxic α-globin subunits. In ß-thalassemic erythrocyte precursors, free α-globin was polyubiquitinated and degraded by the proteasome. These cells exhibited enhanced proteasome activity, and transcriptional profiling revealed coordinated induction of most proteasome subunits that was mediated by the stress-response transcription factor Nrf1. In isolated thalassemic cells, short-term proteasome inhibition blocked the degradation of free α-globin. In contrast, prolonged in vivo treatment of ß-thalassemic mice with the proteasome inhibitor bortezomib did not enhance the accumulation of free α-globin. Rather, systemic proteasome inhibition activated compensatory proteotoxic stress-response mechanisms, including autophagy, which cooperated with ubiquitin-mediated proteolysis to degrade free α-globin in erythroid cells. Our findings show that multiple interregulated PQC responses degrade excess α-globin. Therefore, ß-thalassemia fits into the broader framework of protein-aggregation disorders that use PQC pathways as cell-protective mechanisms.


Assuntos
alfa-Globulinas/metabolismo , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Células Precursoras Eritroides/metabolismo , Inibidores de Proteassoma , Proteólise/efeitos dos fármacos , Pirazinas/farmacologia , Ubiquitinação/efeitos dos fármacos , Talassemia beta/tratamento farmacológico , alfa-Globulinas/genética , Animais , Bortezomib , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação/genética , Talassemia beta/genética , Talassemia beta/metabolismo
14.
J Biol Chem ; 287(14): 11338-50, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22298770

RESUMO

Human α-hemoglobin stabilizing protein (AHSP) is a conserved mammalian erythroid protein that facilitates the production of Hemoglobin A by stabilizing free α-globin. AHSP rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈10 µm(-1) s(-1) and 0.2 s(-1), respectively, at pH 7.4 at 22 °C. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(30) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P30A and P30W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(30) conformer. Both wild-type and Pro(30)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ 0.002 s(-1)) is ∼100-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to ß subunits to form stable fully, reduced hemoglobin dimers and tetramers.


Assuntos
Proteínas Sanguíneas/metabolismo , Hemeproteínas/química , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , alfa-Globinas/química , alfa-Globinas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Hemoglobina A/química , Hemoglobina A/metabolismo , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Especificidade por Substrato
15.
J Biol Chem ; 287(14): 11325-37, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22287545

RESUMO

α-Hemoglobin stabilizing protein (AHSP) is believed to facilitate adult Hemoglobin A assembly and protect against toxic free α-globin subunits. Recombinant AHSP binds multiple forms of free α-globin to stabilize their structures and inhibit precipitation. However, AHSP also stimulates autooxidation of αO(2) subunit and its rapid conversion to a partially unfolded bishistidyl hemichrome structure. To investigate these biochemical properties, we altered the evolutionarily conserved AHSP proline 30 in recombinantly expressed proteins and introduced identical mutations into the endogenous murine Ahsp gene. In vitro, the P30W AHSP variant bound oxygenated α chains with 30-fold increased affinity. Both P30W and P30A mutant proteins also caused decreased rates of αO(2) autooxidation as compared with wild-type AHSP. Despite these abnormalities, mice harboring P30A or P30W Ahsp mutations exhibited no detectable defects in erythropoiesis at steady state or during induced stresses. Further biochemical studies revealed that the AHSP P30A and P30W substitutions had minimal effects on AHSP interactions with ferric α subunits. Together, our findings indicate that the ability of AHSP to stabilize nascent α chain folding intermediates prior to hemin reduction and incorporation into adult Hemoglobin A is physiologically more important than AHSP interactions with ferrous αO(2) subunits.


Assuntos
Hemoglobina A/química , Chaperonas Moleculares/metabolismo , Mutagênese , Proteínas Mutantes/metabolismo , Multimerização Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Eritropoese , Técnicas de Introdução de Genes , Hemina/metabolismo , Hemoglobina A/metabolismo , Humanos , Metemoglobina/química , Metemoglobina/metabolismo , Camundongos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Oxirredução , Conformação Proteica , Multimerização Proteica/genética , Talassemia beta/genética
16.
STAR Protoc ; 3(1): 101070, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35024628

RESUMO

Early erythroid progenitors are transit-amplifying cells with high proliferative capacity committed to undergoing red cell differentiation. CD71/CD24low progenitors are less mature and have greater proliferative capacity than CD71/CD24high. We present protocols for isolation of CD71/CD24low progenitors from mouse fetal liver using both fluorescence-activated cell sorting (FACS) and immunomagnetic enrichment. CD71/CD24low progenitors isolated with both approaches show similar transcriptomes at single-cell resolution and exhibit characteristic proliferative responses to glucocorticoids. For complete details on the use and execution of this protocol, please refer to Li et al. (2019).


Assuntos
Células Precursoras Eritroides , Eritropoese , Animais , Eritropoese/fisiologia , Citometria de Fluxo/métodos , Fígado , Camundongos , Transcriptoma
17.
Nat Genet ; 54(6): 874-884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618846

RESUMO

The mechanisms by which the fetal-type ß-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease and ß-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family-NFIA and NFIX-as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared with fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in ß-globin production.


Assuntos
Hemoglobina Fetal , gama-Globinas , Animais , Proteínas de Transporte/genética , Células Eritroides/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes , Camundongos , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição/genética , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo
18.
Blood Adv ; 6(23): 5956-5968, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622975

RESUMO

The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and ß-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and ß-thalassemia.


Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Talassemia beta/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/terapia , Proteínas de Ligação a RNA/genética
19.
Nat Genet ; 54(9): 1417-1426, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35941187

RESUMO

The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal ß-type globin (HBG) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer-promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A.


Assuntos
Hemoglobinas , Fatores de Transcrição Kruppel-Like , Proteínas Repressoras , Proteínas Supressoras de Tumor , Proteínas de Transporte/genética , Células Eritroides/metabolismo , Hemoglobinas/genética , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , gama-Globinas/genética
20.
Blood ; 114(5): 983-94, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19491391

RESUMO

GATA-1 and PU.1 are essential hematopoietic transcription factors that control erythromegakaryocytic and myelolymphoid differentiation, respectively. These proteins antagonize each other through direct physical interaction to repress alternate lineage programs. We used immortalized Gata1(-) erythromegakaryocytic progenitor cells to study how PU.1/Sfpi1 expression is regulated by GATA-1 and GATA-2, a related factor that is normally expressed at earlier stages of hematopoiesis. Both GATA factors bind the PU.1/Sfpi1 gene at 2 highly conserved regions. In the absence of GATA-1, GATA-2 binding is associated with an undifferentiated state, intermediate level PU.1/Sfpi1 expression, and low-level expression of its downstream myeloid target genes. Restoration of GATA-1 function induces erythromegakaryocytic differentiation. Concomitantly, GATA-1 replaces GATA-2 at the PU.1/Sfpi1 locus and PU.1/Sfpi1 expression is extinguished. In contrast, when GATA-1 is not present, shRNA knockdown of GATA-2 increases PU.1/Sfpi1 expression by 3-fold and reprograms the cells to become macrophages. Our findings indicate that GATA factors act sequentially to regulate lineage determination during hematopoiesis, in part by exerting variable repressive effects at the PU.1/Sfpi1 locus.


Assuntos
Eritropoese/genética , Fator de Transcrição GATA1/fisiologia , Fator de Transcrição GATA2/fisiologia , Regulação da Expressão Gênica/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Repressoras/biossíntese , Trombopoese/genética , Transativadores/biossíntese , Animais , Linhagem da Célula , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Citocinas/farmacologia , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/citologia , Camundongos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa