Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(757): eadm8451, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047117

RESUMO

Messenger RNA (mRNA) vaccines were pivotal in reducing severe acute respiratory syndrome 2 (SARS-CoV-2) infection burden, yet they have not demonstrated robust durability, especially in older adults. Here, we describe a molecular adjuvant comprising a lipid nanoparticle (LNP)-encapsulated mRNA encoding interleukin-12p70 (IL-12p70). The bioactive adjuvant was engineered with a multiorgan protection (MOP) sequence to restrict transcript expression to the intramuscular injection site. Admixing IL-12-MOP (CTX-1796) with the BNT162b2 SARS-CoV-2 vaccine increased spike protein-specific immune responses in mice. Specifically, the benefits of IL-12-MOP adjuvantation included amplified humoral and cellular immunity and increased immune durability for 1 year after vaccination in mice. An additional benefit included the restoration of immunity in aged mice to amounts comparable to those achieved in young adult animals, alongside amplification with a single immunization. Associated enhanced dendritic cell and germinal center responses were observed. Together, these data demonstrate that an LNP-encapsulated IL-12-MOP mRNA-encoded adjuvant can amplify immunogenicity independent of age, demonstrating translational potential to benefit vulnerable populations.


Assuntos
Adjuvantes Imunológicos , Vacinas contra COVID-19 , Interleucina-12 , RNA Mensageiro , SARS-CoV-2 , Vacinas de mRNA , Animais , Interleucina-12/metabolismo , SARS-CoV-2/imunologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Vacinas contra COVID-19/imunologia , Camundongos , Nanopartículas/química , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , Vacina BNT162 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Camundongos Endogâmicos C57BL , Adjuvantes de Vacinas , Humanos , Lipídeos/química , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunidade Celular , Imunidade Humoral , Lipossomos
2.
NPJ Vaccines ; 6(1): 153, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916519

RESUMO

Recent approval of mRNA vaccines for emergency use against COVID-19 is likely to promote rapid development of mRNA-based vaccines targeting a wide range of infectious diseases. Compared to conventional approaches, this vaccine modality promises comparable potency while substantially accelerating the pace of development and deployment of vaccine doses. Already demonstrated successfully for single antigen vaccines such as for COVID-19, this technology could be optimized for complex multi-antigen vaccines. Herein, utilizing multiple influenza antigens, we demonstrated the suitability of the mRNA therapeutic (MRT) platform for such applications. Seasonal influenza vaccines have three or four hemagglutinin (HA) antigens of different viral subtypes. In addition, influenza neuraminidase (NA), a tetrameric membrane protein, is identified as an antigen that has been linked to protective immunity against severe viral disease. We detail the efforts in optimizing formulations of influenza candidates that use unmodified mRNA encoding full-length HA or full-length NA encapsulated in lipid nanoparticles (LNPs). HA and NA mRNA-LNP formulations, either as monovalent or as multivalent vaccines, induced strong functional antibody and cellular responses in non-human primates and such antigen-specific antibody responses were associated with protective efficacy against viral challenge in mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa