Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Muscle Nerve ; 70(5): 980-987, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39205612

RESUMO

INTRODUCTION/AIMS: Phrenic neuropathy (PhN) impairs diaphragm muscle function, causing a spectrum of breathing disability. PhN etiologies and their natural history are ill-defined. This knowledge gap hinders informed prognosis and management decisions. This study aims to help fill this knowledge gap on PhN etiologies, outcomes, and recovery patterns, especially in the context of nonsurgical clinical practice. METHODS: This was a retrospective study from two interdisciplinary clinics, physiatry and neurology based. Patients were included if PhN was identified, and other causes of hemi-diaphragm muscle dysfunction excluded. Patients were followed serially at the discretion of the neuromuscular-trained neurologist or physiatrist. Recovery was assessed using pulmonary function tests (PFTs), diaphragm muscle ultrasound (US) thickening ratio, and patient-reported outcomes in patients presenting within 2 years of PhN onset. RESULTS: We identified 151 patients with PhN. The most common etiologies were idiopathic (27%), associated with cardiothoracic procedure (24%), and intensive care unit (17%). Of these patients, 117 (77%) were evaluated within 2 years of PhN onset. Of patients included in outcome analyses, 64% saw improvement on serial US, 50% on serial PFTs and 79% reported symptomatic improvement at an average of 15, 16, and 17 months, respectively. DISCUSSION: A clear majority of PhN patients show improvement in diaphragm muscle function, but on average, improvements took 15-17 months depending on the assessment type. These insights are vital for developing tailored treatments and can guide physicians in prognosis and decision-making, especially if more invasive interventions are being considered.


Assuntos
Nervo Frênico , Recuperação de Função Fisiológica , Humanos , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Nervo Frênico/fisiopatologia , Idoso , Recuperação de Função Fisiológica/fisiologia , Adulto , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/reabilitação , Doenças do Sistema Nervoso Periférico/etiologia , Diafragma/fisiopatologia , Diafragma/diagnóstico por imagem , Doenças Neuromusculares/reabilitação , Doenças Neuromusculares/fisiopatologia , Testes de Função Respiratória
2.
Adv Healthc Mater ; : e2401875, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219219

RESUMO

Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.

3.
Cell Rep Methods ; 1(2)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34766102

RESUMO

Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.


Assuntos
Anticorpos , Corantes , Humanos , Animais , Camundongos , Imunofluorescência , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa