Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Hum Genet ; 110(12): 2103-2111, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924809

RESUMO

Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.


Assuntos
Haploinsuficiência , Paraplegia Espástica Hereditária , Criança , Humanos , Haploinsuficiência/genética , Mutação , Mutação de Sentido Incorreto/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Paraplegia Espástica Hereditária/genética
2.
Genet Med ; : 101174, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38847193

RESUMO

PURPOSE: We identified two individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with SREBP pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS: We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS: We observed reduced lipid droplet (LD) formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION: Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.

3.
Hum Mol Genet ; 29(22): 3606-3615, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33179741

RESUMO

Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in non-coding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral disks (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and chromatin immunoprecipitation-sequencing against H3 lysine 27 acetylation in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Histonas/genética , Receptores Acoplados a Proteínas G/genética , Escoliose/genética , Acetilação , Adolescente , Criança , Feminino , Estudo de Associação Genômica Ampla , Genômica/tendências , Humanos , Lisina/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , RNA-Seq , Escoliose/epidemiologia , Escoliose/patologia , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Transcriptoma/genética
4.
Hum Mol Genet ; 29(22): 3717-3728, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33105483

RESUMO

Talipes equinovarus (clubfoot, TEV) is a congenital rotational foot deformity occurring in 1 per 1000 births with increased prevalence in males compared with females. The genetic etiology of isolated clubfoot (iTEV) remains unclear. Using a genome-wide association study, we identified a locus within FSTL5, encoding follistatin-like 5, significantly associated with iTEV. FSTL5 is an uncharacterized gene whose potential role in embryonic and postnatal development was previously unstudied. Utilizing multiple model systems, we found that Fstl5 was expressed during later stages of embryonic hindlimb development, and, in mice, expression was restricted to the condensing cartilage anlage destined to form the limb skeleton. In the postnatal growth plate, Fstl5 was specifically expressed in prehypertrophic chondrocytes. As Fstl5 knockout rats displayed no gross malformations, we engineered a conditional transgenic mouse line (Fstl5LSL) to overexpress Fstl5 in skeletal osteochondroprogenitors. We observed that hindlimbs were slightly shorter and that bone mineral density was reduced in adult male, but not female, Prrx1-cre;Fstl5LSL mice compared with control. No overt clubfoot-like deformity was observed in Prrx1-cre;Fstl5LSL mice, suggesting FSTL5 may function in other cell types to contribute to iTEV pathogenesis. Interrogating published mouse embryonic single-cell expression data showed that Fstl5 was expressed in cell lineage subclusters whose transcriptomes were associated with neural system development. Moreover, our results suggest that lineage-specific expression of the Fstl genes correlates with their divergent roles as modulators of transforming growth factor beta and bone morphogenetic protein signaling. Results from this study associate FSTL5 with iTEV and suggest a potential sexually dimorphic role for Fstl5 in vivo.


Assuntos
Pé Torto Equinovaro/genética , Proteínas Relacionadas à Folistatina/genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/genética , Animais , Pé Torto Equinovaro/patologia , Modelos Animais de Doenças , Extremidades/patologia , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Estudos de Associação Genética , Humanos , Camundongos , Ratos
5.
J Med Genet ; 58(1): 41-47, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381727

RESUMO

BACKGROUND: Early-onset scoliosis (EOS), defined by an onset age of scoliosis less than 10 years, conveys significant health risk to affected children. Identification of the molecular aetiology underlying patients with EOS could provide valuable information for both clinical management and prenatal screening. METHODS: In this study, we consecutively recruited a cohort of 447 Chinese patients with operative EOS. We performed exome sequencing (ES) screening on these individuals and their available family members (totaling 670 subjects). Another cohort of 13 patients with idiopathic early-onset scoliosis (IEOS) from the USA who underwent ES was also recruited. RESULTS: After ES data processing and variant interpretation, we detected molecular diagnostic variants in 92 out of 447 (20.6%) Chinese patients with EOS, including 8 patients with molecular confirmation of their clinical diagnosis and 84 patients with molecular diagnoses of previously unrecognised diseases underlying scoliosis. One out of 13 patients with IEOS from the US cohort was molecularly diagnosed. The age at presentation, the number of organ systems involved and the Cobb angle were the three top features predictive of a molecular diagnosis. CONCLUSION: ES enabled the molecular diagnosis/classification of patients with EOS. Specific clinical features/feature pairs are able to indicate the likelihood of gaining a molecular diagnosis through ES.


Assuntos
Predisposição Genética para Doença , Escoliose/diagnóstico , Escoliose/genética , Adolescente , Adulto , Idade de Início , Pré-Escolar , China/epidemiologia , Estudos de Coortes , Exoma/genética , Feminino , Humanos , Masculino , Estudos Retrospectivos , Escoliose/classificação , Escoliose/patologia , Sequenciamento do Exoma
6.
Hum Mol Genet ; 27(22): 3986-3998, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30395268

RESUMO

Adolescent idiopathic scoliosis (AIS) is the most common musculoskeletal disorder of childhood development. The genetic architecture of AIS is complex, and the great majority of risk factors are undiscovered. To identify new AIS susceptibility loci, we conducted the first genome-wide meta-analysis of AIS genome-wide association studies, including 7956 cases and 88 459 controls from 3 ancestral groups. Three novel loci that surpassed genome-wide significance were uncovered in intragenic regions of the CDH13 (P-value_rs4513093 = 1.7E-15), ABO (P-value_ rs687621 = 7.3E-10) and SOX6 (P-value_rs1455114 = 2.98E-08) genes. Restricting the analysis to females improved the associations at multiple loci, most notably with variants within CDH13 despite the reduction in sample size. Genome-wide gene-functional enrichment analysis identified significant perturbation of pathways involving cartilage and connective tissue development. Expression of both SOX6 and CDH13 was detected in cartilage chondrocytes and chromatin immunoprecipitation sequencing experiments in that tissue revealed multiple HeK27ac-positive peaks overlapping associated loci. Our results further define the genetic architecture of AIS and highlight the importance of vertebral cartilage development in its pathogenesis.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Caderinas/genética , Doenças Musculoesqueléticas/genética , Fatores de Transcrição SOXD/genética , Escoliose/genética , Adolescente , Criança , Etnicidade/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Doenças Musculoesqueléticas/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Escoliose/fisiopatologia , Adulto Jovem
7.
Genet Sel Evol ; 49(1): 85, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141579

RESUMO

BACKGROUND: Curly horses present a variety of curl phenotypes that are associated with various degrees of curliness of coat, mane, tail and ear hairs. Their origin is still a matter of debate and several genetic hypotheses have been formulated to explain the diversity in phenotype, including the combination of autosomal dominant and recessive alleles. Our purpose was to map the autosomal dominant curly hair locus and identify the causal variant using genome-wide association study (GWAS) and whole-genome sequencing approaches. RESULTS: A GWAS was performed using a Bayesian sparse linear mixed model, based on 51 curly and 19 straight-haired French and North American horses from 13 paternal families genotyped on the Illumina EquineSNP50 BeadChip. A single strong signal was observed on equine chromosome 11, in a region that encompasses the type I keratin gene cluster. This region was refined by haplotype analysis to a segment including 36 genes, among which are 10 keratin genes (KRT-10, -12, -20, -23, -24, -25, -26, -27, -28, -222). To comprehensively identify candidate causal variants within all these genes, whole-genome sequences were obtained for one heterozygous curly stallion and its straight-haired son. Among the four non-synonymous candidate variants identified and validated in the curly region, only variant g.21891160G>A in the KRT25 gene (KRT25:p.R89H) was in perfect agreement with haplotype status in the whole pedigree. Genetic association was then confirmed by genotyping a larger population consisting of 353 horses. However, five discordant curly horses were observed, which carried neither the variant nor the main haplotype associated with curliness. Sequencing of KRT25 for two discordant horses did not identify any other deleterious variant, which suggests locus rather than allelic heterogeneity for the curly phenotype. CONCLUSIONS: We identified the KRT25:p.R89H variant as responsible for the dominant curly trait, but a second dominant locus may also be involved in the shape of hairs within North American Curly horses.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Cavalos/genética , Queratinas Específicas do Cabelo/genética , Mutação de Sentido Incorreto/genética , Animais , Teorema de Bayes , Cromossomos Humanos Par 11/genética , Genótipo , Haplótipos/genética , Heterozigoto , Humanos , Fenótipo
8.
J Hered ; 106(1): 37-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416795

RESUMO

The Canadian breed of horse invokes a fascinating chapter of North American history and as such it is now a heritage breed and the national horse of Canada. The aims of this study were to determine the level of genetic diversity in the Canadian, investigate the possible foundation breeds and the role it had in the development of the US horse breeds, such as Morgan Horse. We tested a total of 981 horses by using 15 microsatellite markers. We found that Canadian horses have high values of genetic diversity indices and show no evidence of a serious loss of genetic diversity and the inbreeding coefficient was not significantly different from zero. Belgian, Percheron, Breton and Dales Pony, unlike the light French horses, may have common ancestries with the Canadian and could be important founders. However, the Shire and Clydesdale influenced the Canadian to a lesser extent than French and Belgian draft breeds. Furthermore, our finding indicated that there was no evidence of a clear relationship between Canadian and Oriental or Iberian breeds. Also, the Canadian likely contributed to the early development of the Morgan. Finally, these findings support the ancient legends of the Canadian Horse as North America's first equine breed and the foundation bloodstock to many American breeds and may help in the management and breeding program of this outstanding breed in North America.


Assuntos
Cruzamento/história , Variação Genética , Cavalos/genética , Animais , Canadá , Genética Populacional , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Repetições de Microssatélites/genética , Especificidade da Espécie
9.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37962965

RESUMO

Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity, affecting millions of adolescents worldwide, but it lacks a defined theory of etiopathogenesis. Because of this, treatment of AIS is limited to bracing and/or invasive surgery after onset. Preonset diagnosis or preventive treatment remains unavailable. Here, we performed a genetic analysis of a large multicenter AIS cohort and identified disease-causing and predisposing variants of SLC6A9 in multigeneration families, trios, and sporadic patients. Variants of SLC6A9, which encodes glycine transporter 1 (GLYT1), reduced glycine-uptake activity in cells, leading to increased extracellular glycine levels and aberrant glycinergic neurotransmission. Slc6a9 mutant zebrafish exhibited discoordination of spinal neural activities and pronounced lateral spinal curvature, a phenotype resembling human patients. The penetrance and severity of curvature were sensitive to the dosage of functional glyt1. Administration of a glycine receptor antagonist or a clinically used glycine neutralizer (sodium benzoate) partially rescued the phenotype. Our results indicate a neuropathic origin for "idiopathic" scoliosis, involving the dysfunction of synaptic neurotransmission and central pattern generators (CPGs), potentially a common cause of AIS. Our work further suggests avenues for early diagnosis and intervention of AIS in preadolescents.


Assuntos
Escoliose , Animais , Humanos , Adolescente , Escoliose/genética , Escoliose/diagnóstico , Escoliose/cirurgia , Glicina/genética , Peixe-Zebra , Transmissão Sináptica
10.
Elife ; 122024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277211

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Assuntos
Escoliose , Masculino , Animais , Criança , Camundongos , Humanos , Feminino , Adolescente , Escoliose/genética , Metaloproteinase 3 da Matriz/genética , Coluna Vertebral , Fatores de Transcrição/genética , Colágeno/genética , Variação Genética , Colágeno Tipo XI/genética
11.
BMC Genet ; 14: 83, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24034565

RESUMO

BACKGROUND: Maternal inheritance is an essential point in Arabian horse population genetics and strains classification. The mitochondrial DNA (mtDNA) sequencing is a highly informative tool to investigate maternal lineages. We sequenced the whole mtDNA D-loop of 251 Arabian horses to study the genetic diversity and phylogenetic relationships of Arabian populations and to examine the traditional strain classification system that depends on maternal family lines using native Arabian horses from the Middle East. RESULTS: The variability in the upstream region of the D-loop revealed additional differences among the haplotypes that had identical sequences in the hypervariable region 1 (HVR1). While the American-Arabians showed relatively low diversity, the Syrian population was the most variable and contained a very rare and old haplogroup. The Middle Eastern horses had major genetic contributions to the Western horses and there was no clear pattern of differentiation among all tested populations. Our results also showed that several individuals from different strains shared a single haplotype, and individuals from a single strain were represented in clearly separated haplogroups. CONCLUSIONS: The whole mtDNA D-loop sequence was more powerful for analysis of the maternal genetic diversity in the Arabian horses than using just the HVR1. Native populations from the Middle East, such as Syrians, could be suggested as a hot spot of genetic diversity and may help in understanding the evolution history of the Arabian horse breed. Most importantly, there was no evidence that the Arabian horse breed has clear subdivisions depending on the traditional maternal based strain classification system.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Cavalos/classificação , Cavalos/genética , Mitocôndrias/genética , Filogenia , Animais , Sequência de Bases , Análise por Conglomerados , Genética Populacional , Haplótipos , Oriente Médio , Análise de Componente Principal , Análise de Sequência de DNA
12.
J Hered ; 104(3): 386-98, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23450090

RESUMO

The Arabian horse ignites imagination throughout the world. Populations of this breed exist in many countries, and recent genetic work has examined the diversity and ancestry of a few of these populations in isolation. Here, we explore 7 different populations of Arabians represented by 682 horses. Three of these are Middle Eastern populations from near the historical origin of the breed, including Syrian, Persian, and Saudi Arabian. The remaining Western populations are found in Europe (the Shagya Arabian and Polish Arabian) and in America (American Arabian). Analysis of genetic structure was carried out using 15 microsatellite loci. Genetic distances, analysis of molecular variance, factorial correspondence analysis, and a Bayesian method were applied. The results consistently show higher level of diversity within the Middle Eastern populations than the Western populations. The Western Arabian populations were the main source among population variation. Genetic differentiation was not strong among all Middle Eastern populations, but all American Arabians showed differentiation from Middle Eastern populations and were somewhat uniform among themselves. Here, we explore the diversities of many different populations of Arabian horses and find that populations not from the Middle East have noticeably lower levels of diversity, which may adversely affect the health of these populations.


Assuntos
Variação Genética , Cavalos/genética , Repetições de Microssatélites , América , Animais , Teorema de Bayes , Genética Populacional , Irã (Geográfico) , Oriente Médio , Arábia Saudita , Síria
13.
JBMR Plus ; 7(12): e10830, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130750

RESUMO

Adolescent idiopathic scoliosis (AIS) is the most common form of pediatric musculoskeletal disorder. Observational studies have pointed to several risk factors for AIS, but almost no evidence exists to support their causal association with AIS. Here, we applied Mendelian randomization (MR), known to limit bias from confounding and reverse causation, to investigate causal associations between body composition and puberty-related exposures and AIS risk in Europeans and Asians. For our two-sample MR studies, we used single nucleotide polymorphisms (SNPs) associated with body mass index (BMI), waist-hip ratio, lean mass, childhood obesity, bone mineral density (BMD), 25-hydroxyvitamin D (25OHD), age at menarche, and pubertal growth in large European genome-wide association studies (GWAS), and with adult osteoporosis risk and age of menarche in Biobank Japan. We extracted estimates of the aforementioned SNPs on AIS risk from the European or Asian subsets of the largest multiancestry AIS GWAS (N = 7956 cases/88,459 controls). The results of our inverse variance-weighted (IVW) MR estimates suggest no causal association between the aforementioned risk factors and risk of AIS. Pleiotropy-sensitive MR methods yielded similar results. However, restricting our analysis to European females with AIS, we observed a causal association between estimated BMD and the risk of AIS (IVW odds ratio for AIS = 0.1, 95% confidence interval 0.01 to 0.7, p = 0.02 per SD increase in estimated BMD), but this association was no longer significant after adjusting for BMI, body fat mass, and 25OHD and remained significant after adjusting for age at menarche in multivariable MR. In conclusion, we demonstrated a protective causal effect of BMD on AIS risk in females of European ancestry, but this effect was modified by BMI, body fat mass, and 25OHD levels. Future MR studies using larger AIS GWAS are needed to investigate small effects of the aforementioned exposures on AIS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292598

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

15.
Front Endocrinol (Lausanne) ; 14: 1089414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415668

RESUMO

Introduction: Adolescent idiopathic scoliosis (AIS) is a disorder with a three-dimensional spinal deformity and is a common disease affecting 1-5% of adolescents. AIS is also known as a complex disease involved in environmental and genetic factors. A relation between AIS and body mass index (BMI) has been epidemiologically and genetically suggested. However, the causal relationship between AIS and BMI remains to be elucidated. Material and methods: Mendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWASs) of AIS (Japanese cohort, 5,327 cases, 73,884 controls; US cohort: 1,468 cases, 20,158 controls) and BMI (Biobank Japan: 173430 individual; meta-analysis of genetic investigation of anthropometric traits and UK Biobank: 806334 individuals; European Children cohort: 39620 individuals; Population Architecture using Genomics and Epidemiology: 49335 individuals). In MR analyses evaluating the effect of BMI on AIS, the association between BMI and AIS summary statistics was evaluated using the inverse-variance weighted (IVW) method, weighted median method, and Egger regression (MR-Egger) methods in Japanese. Results: Significant causality of genetically decreased BMI on risk of AIS was estimated: IVW method (Estimate (beta) [SE] = -0.56 [0.16], p = 1.8 × 10-3), weighted median method (beta = -0.56 [0.18], p = 8.5 × 10-3) and MR-Egger method (beta = -1.50 [0.43], p = 4.7 × 10-3), respectively. Consistent results were also observed when using the US AIS summary statistic in three MR methods; however, no significant causality was observed when evaluating the effect of AIS on BMI. Conclusions: Our Mendelian randomization analysis using large studies of AIS and GWAS for BMI summary statistics revealed that genetic variants contributing to low BMI have a causal effect on the onset of AIS. This result was consistent with those of epidemiological studies and would contribute to the early detection of AIS.


Assuntos
Estudo de Associação Genômica Ampla , Escoliose , Adolescente , Humanos , Índice de Massa Corporal , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Escoliose/epidemiologia , Escoliose/genética
16.
Genes (Basel) ; 13(2)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205275

RESUMO

The Y chromosome is a valuable genetic marker for studying the origin and influence of paternal lineages in populations. In this study, we conducted Y-chromosomal lineage-tracing in Arabian horses. First, we resolved a Y haplotype phylogeny based on the next generation sequencing data of 157 males from several breeds. Y-chromosomal haplotypes specific for Arabian horses were inferred by genotyping a collection of 145 males representing most Arabian sire lines that are active around the globe. These lines formed three discrete haplogroups, and the same haplogroups were detected in Arabian populations native to the Middle East. The Arabian haplotypes were clearly distinct from the ones detected in Akhal Tekes, Turkoman horses, and the progeny of two Thoroughbred foundation sires. However, a haplotype introduced into the English Thoroughbred by the stallion Byerley Turk (1680), was shared among Arabians, Turkomans, and Akhal Tekes, which opens a discussion about the historic connections between Oriental horse types. Furthermore, we genetically traced Arabian sire line breeding in the Western World over the past 200 years. This confirmed a strong selection for relatively few male lineages and uncovered incongruences to written pedigree records. Overall, we demonstrate how fine-scaled Y-analysis contributes to a better understanding of the historical development of horse breeds.


Assuntos
Variação Genética , Cromossomo Y , Animais , Feminino , Haplótipos , Cavalos/genética , Masculino , Linhagem , Filogenia , Cromossomo Y/genética
17.
J Bone Miner Res ; 36(8): 1548-1565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905568

RESUMO

Proper embryonic and postnatal skeletal development require coordination of myriad complex molecular mechanisms. Disruption of these processes, through genetic mutation, contributes to variation in skeletal development. We developed a high-throughput N-ethyl-N-nitrosourea (ENU)-induced saturation mutagenesis skeletal screening approach in mice to identify genes required for proper skeletal development. Here, we report initial results from live-animal X-ray and dual-energy X-ray absorptiometry (DXA) imaging of 27,607 G3 mice from 806 pedigrees, testing the effects of 32,198 coding/splicing mutations in 13,020 genes. A total of 39.7% of all autosomal genes were severely damaged or destroyed by mutations tested twice or more in the homozygous state. Results from our study demonstrate the feasibility of in vivo mutagenesis to identify mouse models of skeletal disease. Furthermore, our study demonstrates how ENU mutagenesis provides opportunities to create and characterize putative hypomorphic mutations in developmentally essential genes. Finally, we present a viable mouse model and case report of recessive skeletal disease caused by mutations in FAM20B. Results from this study, including engineered mouse models, are made publicly available via the online Mutagenetix database. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Doenças Ósseas/genética , Células Germinativas , Mutagênese , Animais , Etilnitrosoureia , Humanos , Camundongos , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
18.
Clin Case Rep ; 8(8): 1452-1457, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884773

RESUMO

We present the use of whole-genome sequencing to correctly diagnose progressive pseudorheumatoid dysplasia in patients with atypical clinical and radiologic findings and prior diagnosis of juvenile idiopathic arthritis.

19.
Bone Res ; 8: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195011

RESUMO

The human spinal column is a dynamic, segmented, bony, and cartilaginous structure that protects the neurologic system and simultaneously provides balance and flexibility. Children with developmental disorders that affect the patterning or shape of the spine can be at risk of neurologic and other physiologic dysfunctions. The most common developmental disorder of the spine is scoliosis, a lateral deformity in the shape of the spinal column. Scoliosis may be part of the clinical spectrum that is observed in many developmental disorders, but typically presents as an isolated symptom in otherwise healthy adolescent children. Adolescent idiopathic scoliosis (AIS) has defied understanding in part due to its genetic complexity. Breakthroughs have come from recent genome-wide association studies (GWAS) and next generation sequencing (NGS) of human AIS cohorts, as well as investigations of animal models. These studies have identified genetic associations with determinants of cartilage biogenesis and development of the intervertebral disc (IVD). Current evidence suggests that a fraction of AIS cases may arise from variation in factors involved in the structural integrity and homeostasis of the cartilaginous extracellular matrix (ECM). Here, we review the development of the spine and spinal cartilages, the composition of the cartilage ECM, the so-called "matrisome" and its functions, and the players involved in the genetic architecture of AIS. We also propose a molecular model by which the cartilage matrisome of the IVD contributes to AIS susceptibility.

20.
Genes (Basel) ; 10(8)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434327

RESUMO

The Estonian Native Horse (ENH) is a medium-size pony found mainly in the western islands of Estonia and is well-adapted to the harsh northern climate and poor pastures. The ancestry of the ENH is debated, including alleged claims about direct descendance from the extinct Tarpan. Here we conducted a detailed analysis of the genetic makeup and relationships of the ENH based on the genotypes of 15 autosomal short tandem repeats (STRs), 18 Y chromosomal single nucleotide polymorphisms (SNPs), mitochondrial D-loop sequence and lateral gait allele in DMRT3. The study encompassed 2890 horses of 61 breeds, including 33 ENHs. We show that the expected and observed genetic diversities of the ENH are among the highest within 52 global breeds, and the highest among 8 related Northern European ponies. The genetically closest breeds to the ENH are the Finn Horse, and the geographically more distant primitive Hucul and Konik. ENH matrilines are diverse and relate to draught and Pontic-Caspian breeds. ENH patrilines relate to draught breeds, and to a unique haplogroup not described before. None of the 33 ENHs carried the "gait" mutation, but the mutation was found in 2 Huculs. The study demonstrates that the ENH is a genetically distinct and diverse breed of ancient origin with no notable pressure of selective breeding.


Assuntos
Evolução Molecular , Cavalos/genética , Filogenia , Alelos , Animais , Genótipo , Cavalos/classificação , Repetições Minissatélites , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa