Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pediatr Nephrol ; 37(7): 1623-1646, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993602

RESUMO

BACKGROUND: Genetic kidney diseases contribute a significant portion of kidney diseases in children and young adults. Nephrogenetics is a rapidly evolving subspecialty; however, in the clinical setting, increased use of genetic testing poses implementation challenges. Consequently, we established a national nephrogenetics clinic to apply a multidisciplinary model. METHODS: Patients were referred from different pediatric or adult nephrology units across the country if their primary nephrologist suspected an undiagnosed genetic kidney disease. We determined the diagnostic rate and observed the effect of diagnosis on medical care. We also discuss the requirements of a nephrogenetics clinic in terms of logistics, recommended indications for referral, and building a multidisciplinary team. RESULTS: Over 24 months, genetic evaluation was completed for a total of 74 unrelated probands, with an age range of 10 days to 72 years. The most common phenotypes included congenital anomalies of the kidneys and urinary tract, nephrotic syndrome or unexplained proteinuria, nephrocalcinosis/nephrolithiasis, tubulopathies, and unexplained kidney failure. Over 80% of patients were referred due to clinical suspicion of an undetermined underlying genetic diagnosis. A molecular diagnosis was reached in 42/74 probands, yielding a diagnostic rate of 57%. Of these, over 71% of diagnoses were made via next generation sequencing (gene panel or exome sequencing). CONCLUSIONS: We identified a substantial fraction of genetic kidney etiologies among previously undiagnosed individuals which influenced subsequent clinical management. Our results support that nephrogenetics, a rapidly evolving field, may benefit from well-defined multidisciplinary co-management administered by a designated team of nephrologist, geneticist, and bioinformatician. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Testes Genéticos , Nefropatias , Criança , Humanos , Nefropatias/genética , Fenótipo , Encaminhamento e Consulta , Sequenciamento do Exoma/métodos
2.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445777

RESUMO

INTRODUCTION: Hemophilia A (HA) is an X-linked bleeding disorder caused by factor VIII (FVIII) deficiency or dysfunction due to F8 gene mutations. HA carriers are usually asymptomatic because their FVIII levels correspond to approximately half of the concentration found in healthy individuals. However, in rare cases, a carrier may exhibit symptoms of moderate to severe HA primarily due to skewed inactivation of her non-hemophilic X chromosome. AIM: The aim of the study was to investigate X-chromosome inactivation (XCI) patterns in HA carriers, with special emphasis on three karyotypically normal HA carriers presenting with moderate to severe HA phenotype due to skewed XCI, in an attempt to elucidate the molecular mechanism underlying skewed XCI in these symptomatic HA carriers. The study was based on the hypothesis that the presence of a pathogenic mutation on the non-hemophilic X chromosome is the cause of extreme inactivation of that X chromosome. METHODS: XCI patterns were studied by PCR analysis of the CAG repeat region in the HUMARA gene. HA carriers that demonstrated skewed XCI were further studied by whole-exome sequencing (WES) followed by X chromosome-targeted bioinformatic analysis. RESULTS: All three HA carriers presenting with the moderate to severe HA phenotype due to skewed XCI were found to carry pathogenic mutations on their non-hemophilic X chromosomes. Patient 1 was diagnosed with a frameshift mutation in the PGK1 gene that was associated with familial XCI skewing in three generations. Patient 2 was diagnosed with a missense mutation in the SYTL4 gene that was associated with familial XCI skewing in two generations. Patient 3 was diagnosed with a nonsense mutation in the NKAP gene that was associated with familial XCI skewing in two generations. CONCLUSION: Our results indicate that the main reason for skewed XCI in our female HA patients was negative selection against cells with a disadvantage caused by an additional deleterious mutation on the silenced X chromosome, thus complicating the phenotype of a monogenic X-linked disease. Based on our study, we are currently offering the X inactivation test to symptomatic hemophilia carriers and plan to expand this approach to symptomatic carriers of other X-linked diseases, which can be further used in pregnancy planning.


Assuntos
Cromossomos Humanos X/genética , Hemofilia A/genética , Inativação do Cromossomo X/genética , Adulto , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Mutação/genética , Fenótipo
3.
Kidney Int Rep ; 8(10): 2126-2135, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37850020

RESUMO

Introduction: Genetic etiologies are estimated to account for a large portion of chronic kidney diseases (CKD) in children. However, data are lacking regarding the true prevalence of monogenic etiologies stemming from an unselected population screen of children with advanced CKD. Methods: We conducted a national multicenter prospective study of all Israeli pediatric dialysis units to provide comprehensive "real-world" evidence for the genetic basis of childhood kidney failure in Israel. We performed exome sequencing and assessed the genetic diagnostic yield. Results: Between 2019 and 2022, we recruited approximately 88% (n = 79) of the children on dialysis from all 6 Israeli pediatric dialysis units. We identified genetic etiologies in 36 of 79 (45%) participants. The most common subgroup of diagnostic variants was in congenital anomalies of the kidney and urinary tract causing genes (e.g., EYA1, HNF1B, PAX2, COL4A1, and NFIA) which together explain 28% of all monogenic etiologies. This was followed by mutations in genes causing renal cystic ciliopathies (e.g., NPHP1, NPHP4, PKHD1, and BBS9), steroid-resistant nephrotic syndrome (e.g., LAGE3, NPHS1, NPHS2, LMX1B, and SMARCAL1) and tubulopathies (e.g., CTNS and AQP2). The genetic diagnostic yield was higher among Arabs compared to Jewish individuals (55% vs. 29%) and in children from consanguineous compared to nonconsanguineous families (63% vs. 29%). In 5 participants (14%) with genetic diagnoses, the molecular diagnosis did not correspond with the pre-exome diagnosis. Genetic diagnosis has a potential influence on clinical management in 27 of 36 participants (75%). Conclusion: Exome sequencing in an unbiased Israeli nationwide dialysis-treated kidney failure pediatric cohort resulted in a genetic diagnostic yield of 45% and can often affect clinical decision making.

4.
Ann Clin Transl Neurol ; 8(1): 81-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197148

RESUMO

OBJECTIVE: To determine whether pediatric-onset multiple sclerosis (POMS) and adults-onset multiple sclerosis (AOMS) patients are different in initial disease severity and recovery and to investigate the associations with peripheral blood mononuclear cells (PBMCs) transcriptional profiles. METHODS: Clinical and radiological severity of first and second relapses and 6-month recovery were analyzed in 2153 multiple sclerosis (MS) patients and compared between POMS (onset at 8-18years old) and AOMS (onset at 19-40 years old) patients. PBMCs transcriptomes of 15 POMS and 15 gender-matched AOMS patients were analyzed 6 months after the first relapse and compared to 55 age-matched healthy controls. Differentially Expressed Genes (DEGs) with a false discovery rate ≤ 10% were evaluated using the Partek software. RESULTS: POMS had increased Expanded Disability Status Scale (EDSS) score at first and second relapses, higher brain gadolinium-enhancing T1-lesions volume at first relapse, and more complete recovery after both relapses compared to AOMS. POMS patients, who recovered completely from the first relapse, were characterized by 19 DEGs that were mainly related to suppression of antigen presentation. Six upstream regulators of these genes were differentially expressed between pediatric and adult healthy controls. POMS patients, who showed no recovery from the first relapse, were characterized by 28 DEGs that were mainly associated with B-cell activation. Five upstream regulators of these genes were differentially expressed between pediatric and adult healthy controls. INTERPRETATION: POMS patients may have more severe first and second relapses than AOMS. However, most often, POMS have better recovery that may be attributed to PBMCs age-related transcriptional profiles associated with antigen presentation and B-cell activation.


Assuntos
Progressão da Doença , Esclerose Múltipla Recidivante-Remitente/patologia , Índice de Gravidade de Doença , Adolescente , Adulto , Idade de Início , Encéfalo/patologia , Criança , Estudos de Coortes , Avaliação da Deficiência , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/imunologia , Estudos Retrospectivos , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa