Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2307928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37824280

RESUMO

Bulk hydrogel scaffolds are common in reconstructive surgery. They allow for the staged repair of soft tissue loss by providing a base for revascularization. Unfortunately, they are limited by both slow and random vascularization, which may manifest as treatment failure or suboptimal repair. Rapidly inducing patterned vascularization within biomaterials has profound translational implications for current clinical treatment paradigms and the scaleup of regenerative engineering platforms. To address this long-standing challenge, a novel microsurgical approach and granular hydrogel scaffold (GHS) technology are co-developed to hasten and pattern microvascular network formation. In surgical micropuncture (MP), targeted recipient blood vessels are perforated using a microneedle to accelerate cell extravasation and angiogenic outgrowth. By combining MP with an adjacent GHS with precisely tailored void space architecture, microvascular pattern formation as assessed by density, diameter, length, and intercapillary distance is rapidly guided. This work opens new translational opportunities for microvascular engineering, advancing reconstructive surgery, and regenerative medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Hidrogéis/farmacologia , Neovascularização Patológica , Punções , Neovascularização Fisiológica
2.
FASEB J ; 37(12): e23307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983646

RESUMO

Glioblastoma is one of the deadliest malignancies facing modern oncology today. The ability of glioblastoma cells to diffusely spread into neighboring healthy brain makes complete surgical resection nearly impossible and contributes to the recurrent disease faced by most patients. Although research into the impact of iron on glioblastoma has addressed proliferation, there has been little investigation into how cellular iron impacts the ability of glioblastoma cells to migrate-a key question, especially in the context of the diffuse spread observed in these tumors. Herein, we show that increasing cellular iron content results in decreased migratory capacity of human glioblastoma cells. The decrease in migratory capacity was accompanied by a decrease in cellular polarization in the direction of movement. Expression of CDC42, a Rho GTPase that is essential for both cellular migration and establishment of polarity in the direction of cell movement, was reduced upon iron treatment. We then analyzed a single-cell RNA-seq dataset of human glioblastoma samples and found that cells at the tumor periphery had a gene signature that is consistent with having lower levels of cellular iron. Altogether, our results suggest that cellular iron content is impacting glioblastoma cell migratory capacity and that cells with higher iron levels exhibit reduced motility.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Movimento Celular/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Proliferação de Células
3.
Small ; 18(37): e2202390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35922399

RESUMO

3D bioprinting of granular hydrogels comprising discrete hydrogel microparticles (microgels) may overcome the intrinsic structural limitations of bulk (nanoporous) hydrogel bioinks, enabling the fabrication of modular thick tissue constructs. The additive manufacturing of granular scaffolds has predominantly relied on highly jammed microgels to render the particulate suspensions shear yielding and extrudable. This inevitably compromises void spaces between microgels (microporosity), defeating rapid cell penetration, facile metabolite and oxygen transfer, and cell viability. Here, this persistent bottleneck is overcome by programming microgels with reversible interfacial nanoparticle self-assembly, enabling the fabrication of nanoengineered granular bioinks (NGB) with well-preserved microporosity, enhanced printability, and shape fidelity. The microporous architecture of bioprinted NGB constructs permits immediate post-printing 3D cell seeding, which may expand the library of bioinks via circumventing the necessity of bioorthogonality for cell-laden scaffold formation. This work opens new opportunities for the 3D bioprinting of tissue engineering microporous scaffolds beyond the traditional biofabrication window.


Assuntos
Bioimpressão , Microgéis , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
4.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066378

RESUMO

Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.

5.
Adv Sci (Weinh) ; 10(31): e2302229, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726225

RESUMO

The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.


Assuntos
Neoplasias da Mama , Dineínas , Humanos , Feminino , Dineínas/metabolismo , Actomiosina/metabolismo , Movimento Celular , Hidrogéis
6.
Curr Opin Green Sustain Chem ; 38: 100695, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277846

RESUMO

Medical waste has increased in the past 3 years as a result of the coronavirus disease 2019 (COVID-19) pandemic. This condition is expected to exacerbate due to the growing healthcare markets and aging population, posing health threats to the public via environmental footprints. To alleviate these impacts, there is an urgent need for medical waste management. This article highlights the drawbacks of current disposal methods and the potential of medical waste reuse and recycling, emphasizing the processes, materials, and chemistry involved in each practice. Further discussion is provided on the chemical and mechanical recycling of plastics as the dominating material in biomedical applications, and possible strategies and challenges in recycling and reusing biomedical materials are explored in this review.

7.
J Vis Exp ; (190)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571405

RESUMO

The emergence of granular hydrogel scaffolds (GHS), fabricated via assembling hydrogel microparticles (HMPs), has enabled microporous scaffold formation in situ. Unlike conventional bulk hydrogels, interconnected microscale pores in GHS facilitate degradation-independent cell infiltration as well as oxygen, nutrient, and cellular byproduct transfer. Methacryloyl-modified gelatin (GelMA), a (photo)chemically crosslinkable, protein-based biopolymer containing cell adhesive and biodegradable moieties, has widely been used as a cell-responsive/instructive biomaterial. Converting bulk GelMA to GHS may open a plethora of opportunities for tissue engineering and regeneration. In this article, we demonstrate the procedures of high-throughput GelMA microgel fabrication, conversion to resuspendable dry microgels (micro-aerogels), GHS formation via the chemical assembly of microgels, and granular bioink fabrication for extrusion bioprinting. We show how a sequential physicochemical treatment via cooling and photocrosslinking enables the formation of mechanically robust GHS. When light is inaccessible (e.g., during deep tissue injection), individually crosslinked GelMA HMPs may be bioorthogonally assembled via enzymatic crosslinking using transglutaminases. Finally, three-dimensional (3D) bioprinting of microporous GHS at low HMP packing density is demonstrated via the interfacial self-assembly of heterogeneously charged nanoparticles.


Assuntos
Bioimpressão , Microgéis , Gelatina , Alicerces Teciduais , Hidrogéis , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Metacrilatos , Liofilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa