Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(2): 529-538, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27909778

RESUMO

Glycopeptide enrichment is a crucial step in glycoproteomics for which hydrophilic interaction chromatography (HILIC) has extensively been applied due to its low bias towards different glycan types. A systematic evaluation of applicable HILIC mobile phases on glycopeptide enrichment efficiency and selectivity is, to date, however, still lacking. Here, we present a novel, simplified technique for HILIC enrichment termed "Drop-HILIC", which was applied to systematically evaluate the mobile phase effect on ZIC-HILIC (zwitterionic type of hydrophilic interaction chromatography) glycopeptide enrichment. The four most commonly used MS compatible organic solvents were investigated: (i) acetonitrile, (ii) methanol, (iii) ethanol and (iv) isopropanol. Glycopeptide enrichment efficiencies were evaluated for each solvent system using samples of increasing complexity ranging from well-defined synthetic glycopeptides spiked into different concentrations of tryptic BSA peptides, followed by standard glycoproteins, and a complex sample derived from human (depleted and non-depleted) serum. ZIC-HILIC glycopeptide efficiency largely relied upon the used solvent. Different organic mobile phases enriched distinct glycopeptide subsets in a peptide backbone hydrophilicity-dependant manner. Acetonitrile provided the best compromise for the retention of both hydrophilic and hydrophobic glycopeptides, whereas methanol was confirmed to be unsuitable for this purpose. The enrichment efficiency of ethanol and isopropanol towards highly hydrophobic glycopeptides was compromised as considerable co-enrichment of unmodified peptides occurred, though for some hydrophobic glycopeptides isopropanol showed the best enrichment properties. This study shows that even minor differences in the peptide backbone and solvent do significantly influence HILIC glycopeptide enrichment and need to be carefully considered when employed for glycopeptide enrichment. Graphical Abstract The organic solvent plays a crucial role in ZIC-HILIC glycopeptide enrichment.


Assuntos
Glicopeptídeos/isolamento & purificação , Solventes/química , Acetonitrilas/química , Cromatografia Líquida , Etanol/química , Glicopeptídeos/análise , Glicopeptídeos/síntese química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metanol/química , Estrutura Molecular
2.
Theranostics ; 13(9): 3041-3063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284439

RESUMO

Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies.


Assuntos
Fragmentos de Imunoglobulinas , Neoplasias , Humanos , Antígenos Glicosídicos Associados a Tumores , Anticorpos Monoclonais , Neoplasias/terapia , Polissacarídeos , Microambiente Tumoral
3.
Cell Chem Biol ; 29(8): 1353-1361.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35705094

RESUMO

The development of antibodies that target specific glycan structures on cancer cells or human pathogens poses a significant challenge due to the immense complexity of naturally occurring glycans. Automated glycan assembly enables the production of structurally homogeneous glycans in amounts that are difficult to derive from natural sources. Nanobodies (Nbs) are the smallest antigen-binding domains of heavy-chain-only antibodies (hcAbs) found in camelids. To date, the development of glycan-specific Nbs using synthetic glycans has not been reported. Here, we use defined synthetic glycans for alpaca immunization to elicit glycan-specific hcAbs, and describe the identification, isolation, and production of a Nb specific for the tumor-associated carbohydrate antigen Globo-H. The Nb binds the terminal fucose of Globo-H and recognizes synthetic Globo-H in solution and native Globo-H on breast cancer cells with high specificity. These results demonstrate the potential of our approach for generating glycan-targeting Nbs to be used in biomedical and biotechnological applications.


Assuntos
Anticorpos de Domínio Único , Anticorpos , Fucose , Humanos , Imunização , Polissacarídeos , Anticorpos de Domínio Único/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa