Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phycol ; 55(4): 840-857, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30913303

RESUMO

Microbial volatiles have a significant impact on the physiological functions of prokaryotic and eukaryotic organisms. Various ketones are present in volatile mixtures produced by plants, bacteria, and fungi. Our earlier results demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. In this work, we thoroughly examined the natural ketones, 2-nonanone and 2-undecanone to determine their influence on the photosynthetic activity in Synechococcus sp. PCC 7942. We observed for the first time that the ketones strongly inhibit electron transport through PSII in cyanobacteria cells in vivo. The addition of ketones decreases the quantum yield of primary PSII photoreactions and changes the PSII chlorophyll fluorescence induction curves. There are clear indications that the ketones inhibit electron transfer from QA to QB , electron transport at the donor side of PSII. The ketones can also modify the process of energy transfer from the antenna complex to the PSII reaction center and, by this means, increase both chlorophyll fluorescence quantum yield and the chlorophyll excited state lifetime. At the highest tested concentration (5 mM) 2-nonanone also induced chlorophyll release from Synechococcus cells that strongly indicates the possible role of the ketones as detergents.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II , Clorofila , Transporte de Elétrons , Cetonas
2.
Appl Microbiol Biotechnol ; 101(14): 5765-5771, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28577028

RESUMO

Many bacteria, fungi, and plants produce volatile organic compounds (VOCs) emitted to the environment. Bacterial VOCs play an important role in interactions between microorganisms and in bacterial-plant interactions. Here, we show that such VOCs as ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit the DnaKJE-ClpB bichaperone dependent refolding of heat-inactivated bacterial luciferases. The inhibitory activity of ketones had highest effect in Escherichia coli ibpB::kan cells lacking small chaperone IbpB. Effect of ketones activity increased in the series: 2-pentanone, 2-undecanone, 2-heptanone, and 2-nonanone. These observations can be explained by the interaction of ketones with hydrophobic segments of heat-inactivated substrates and the competition with the chaperones IbpAB. If the small chaperone IbpB is absent in E. coli cells, the ketones block the hydrophobic segments of the polypeptides and inhibit the action of the bichaperone system. These results are consistent with the data on inhibitory effects of VOCs on survival of bacteria. It can be suggested that the inhibitory activity of the ketones indicated is associated with different ability of these substances to interact with hydrophobic segments in proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Cetonas/farmacologia , Luciferases Bacterianas/química , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Luciferases Bacterianas/genética , Luciferases Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia
3.
Res Microbiol ; 175(7): 104214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740236

RESUMO

The diversity of the biological activity of volatile organic compounds (VOCs), including unsaturated ketone ß-ionone, promising pharmacological, biotechnological, and agricultural agent, has aroused considerable interest. However, the functional role and mechanisms of action of VOCs remain insufficiently studied. In this work, the response of bacterial cells to the action of ß-ionone was studied using specific bioluminescent lux-biosensors containing stress-sensitive promoters. We determined that in Escherichia coli cells, ß-ionone induces oxidative stress (PkatG and Pdps promoters) through a specific response mediated by the OxyR/OxyS regulon, but not SoxR/SoxS (PsoxS promoter). It has been shown that ß-ionone at high concentrations (50 µM and above) causes a weak induction of the expression from the PibpA promoter and slightly induces the PcolD promoter in the E. coli biosensors; the observed effect is enhanced in the ΔoxyR mutants. This indicates the presence of some damage to proteins and DNA. ß-Ionone was found to inhibit the bichaperone-dependent DnaKJE-ClpB refolding of heat-inactivated bacterial luciferase in E. coli wild-type and ΔibpB mutant strains. In the cells of the Gram-positive bacterium Bacillus subtilis 168 pNK-MrgA ß-ionone does not cause oxidative stress. Thus, in this work, the specificity of bacterial cell stress responses to the action of ß-ionone was shown.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Norisoprenoides , Estresse Oxidativo , Regiões Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Norisoprenoides/farmacologia , Norisoprenoides/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
4.
Folia Microbiol (Praha) ; 68(4): 617-626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36790684

RESUMO

Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S. proteamaculans 94 strain on Arabidopsis thaliana plants (on growth and germination of seeds). We demonstrated that total mixtures of volatile compounds emitted by these strains grown on Luria-Bertani agar, Tryptone Soya Agar, and Potato Dextrose Agar media inhibited the A. thaliana growth. When studied bacteria grew on Murashige and Skoog (MS) agar medium, volatile mixtures produced by bacteria could stimulate the growth of plants. Volatile compounds of bacteria slowed down the germination of plant seeds; in the presence of volatile mixtures of P. fluorescens B-4117, the seeds did not germinate. Of the individual VOCs, 2-heptanone had the most potent inhibitory effect on seed germination. We also showed that the tested VOCs did not cause oxidative stress in Escherichia coli cells using specific lux-biosensors. VOCs reduced the expression of the lux operon from the promoters of the katG, oxyS, and soxS genes (whose products involved in the protection of cells from oxidative stress) caused by the action of hydrogen peroxide and paraquat, respectively.


Assuntos
Pseudomonas , Compostos Orgânicos Voláteis , Pseudomonas/genética , Pseudomonas/metabolismo , Ágar/metabolismo , Escherichia coli/metabolismo , Serratia/genética , Serratia/metabolismo , Compostos Orgânicos Voláteis/farmacologia
5.
Microorganisms ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893570

RESUMO

Volatile organic compounds (VOCs) emitted by bacteria play an important role in the interaction between microorganisms and other organisms. They can inhibit the growth of phytopathogenic microorganisms, modulate plant growth, and serve as infochemicals. Here, we investigated the effects of ketones, alcohols, and terpenes on the colony biofilms of plant pathogenic Agrobacterium tumefaciens strains and swimming motility, which can play an important role in the formation of biofilms. It was shown that 2-octanone had the greatest inhibitory effect on biofilm formation, acting in a small amount (38.7 g/m3). Ketone 2-butanone and unsaturated ketone ß-ionone reduced the formation of biofilms at higher doses (145.2-580.6 and 387.1-1548.3 g/m3, respectively, up to 2.5-5 times). Isoamyl alcohol and 2-phenylethanol decreased the formation of biofilms at doses of 88.7 and 122.9 g/m3 by 1.7 and 5 times, respectively, with an increased effect at 177.4 and 245.9 g/m3, respectively. The agrobacteria cells in mature biofilms were more resistant to the action of ketones and alcohols. These VOCs also suppressed the swimming motility of agrobacteria; the radius of swimming zones decreased ~from 2 to 5 times. Terpenes (-)-limonene and (+)-α-pinene had no significant influence on the colony biofilms and swimming motility at the doses used. The results obtained represent new information about the effect of VOCs on biofilms and the motility of bacteria.

6.
J Funct Biomater ; 13(4)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36412874

RESUMO

This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power ultrasonic treatment. The antibacterial properties of the materials were studied in laboratory tests on solid and liquid nutrient media using bacteria of different taxonomic groups (Escherichia coli, Chromobacterium violaceum, Pseudomonas chlororaphis). On solid media, the coatings were able to achieve a >50% decrease in the number of bacteria. The field tests were carried out in a tropical climate, at the Climate test station "Hoa Lac" (Hanoi city, Vietnam). The composite materials demonstrated long-term antibacterial activity in the tropical climate: the number of microorganisms remained within the range of 1−3% in comparison with the control sample for the duration of the experiment (3 months). Ten of the microorganisms that most frequently occurred on the surface of the coated textiles were identified. The bacteria were harmless, while the fungi were pathogenic and contributed to fabric deterioration. Tensile strength deterioration was also studied, with the fabrics coated with metal oxides demonstrating a better preservation of their mechanical characteristics over time, (there was a 42% tensile strength decrease for the reference non-coated sample and a 21% decrease for the sample with a ZnO + CTAB coating).

7.
Microbes Infect ; 23(9-10): 104852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197907

RESUMO

Quorum Sensing (QS) system regulates gene expression in response to a change in the density of the bacterial population. Facultative pathogen Serratia proteamaculans 94 has a LuxI/LuxR type QS system consisting of regulatory protein SprR and AHL synthase SprI. Invasive activity of these bacteria appears at the stationary growth phase corresponding to a maximal density of the bacterial population in vitro. To evaluate the contribution of QS system of S. proteamaculans 94 to the regulation of invasive activity, in this work, S. proteamaculans SprI(-) mutant carrying the inactivated AHL synthase gene was used. Inactivation of the AHL synthase sprI gene resulted in a more than fourfold increase in the invasive activity of S. proteamaculans preceded by the increased adhesion of bacteria to the cell surface. This effect correlated with the increased expression of the outer membrane protein ompX gene and the decrease in the activity of intrabacterial protease protealysin, whose substrate is OmpX. The inverse correlation between activity of protealysin and bacterial invasion was also observed in the model experiments under the iron-limiting culture conditions. These results show that QS system regulates the S. proteamaculans invasion. This regulation can involve changes both in the protealysin activity and in the level of the ompX gene transcription.


Assuntos
Ligases , Serratia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Percepção de Quorum/genética , Serratia/genética , Serratia/metabolismo
8.
Microorganisms ; 9(10)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34683403

RESUMO

The bacteria Serratia proteamaculans 94 have a LuxI/LuxR type QS system consisting of AHL synthase SprI and the regulatory receptor SprR. We have previously shown that inactivation of the AHL synthase sprI gene resulted in an increase in the invasive activity of S. proteamaculans correlated with an increased bacterial adhesion. In the present work, the effects of inactivation of the S. proteamaculans receptor SprR are studied. Our results show that inactivation of the receptor sprR gene leads to an increase in bacterial invasion without any increase in their adhesion. On the other hand, inactivation of the sprR gene increases the activity of the extracellular protease serralysin. Inactivation of the QS system does not affect the activity of the pore-forming toxin ShlA and prevents the ShlA activation under conditions of a limited concentration of iron ions typical of the human body. While the wild type strain shows increased invasion in the iron-depleted medium, deletion of its QS system leads to a decrease in host cell invasion, which is nevertheless similar to the level of the wild type S. proteamaculans grown in the iron-rich medium. Thus, inactivation of either of the two component of the S. proteamaculans LuxI/LuxR-type QS system leads to an increase in the invasive activity of these bacteria through different mechanisms and prevents invasion under the iron-limited conditions.

9.
Biomolecules ; 11(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072355

RESUMO

A broad spectrum of volatile organic compounds' (VOCs') biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs-the cyclic monoterpenes (-)-limonene and (+)-α-pinene-on bacteria was studied in this work. We used genetically engineered Escherichia coli bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the luxCDABE genes of Photorhabdus luminescens. We showed that (-)-limonene induces the PkatG and PsoxS promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability). The experimental data indicate that the action of (-)-limonene at high concentrations and prolonged incubation time makes degrading processes in cells irreversible. The effect of (+)-α-pinene is much weaker: it induces only heat shock in the bacteria. Moreover, we showed for the first time that (-)-limonene completely inhibits the DnaKJE-ClpB bichaperone-dependent refolding of heat-inactivated bacterial luciferase in both E. coli wild type and mutant ΔibpB strains. (+)-α-Pinene partially inhibits refolding only in ΔibpB mutant strain.


Assuntos
Proteínas de Bactérias , Monoterpenos Bicíclicos , Dano ao DNA , DNA Bacteriano , Escherichia coli K12 , Limoneno , Resposta SOS em Genética/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/metabolismo , Monoterpenos Bicíclicos/farmacologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Limoneno/química , Limoneno/metabolismo , Limoneno/farmacologia , Photorhabdus/genética
10.
Microorganisms ; 10(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056518

RESUMO

Bacteria and fungi emit a huge variety of volatile organic compounds (VOCs) that can provide a valuable arsenal for practical use. However, the biological activities and functions of the VOCs are poorly understood. This work aimed to study the action of individual VOCs on the bacteria Agrobacterium tumefaciens, Arabidopsis thaliana plants, and fruit flies Drosophila melanogaster. VOCs used in the work included ketones, alcohols, and terpenes. The potent inhibitory effect on the growth of A. tumefaciens was shown for 2-octanone and isoamyl alcohol. Terpenes (-)-limonene and (+)-α-pinene practically did not act on bacteria, even at high doses (up to 400 µmol). 2-Butanone and 2-pentanone increased the biomass of A. thaliana at doses of 200-400 µmol by 1.5-2 times; 2-octanone had the same effect at 10 µmol and decreased plant biomass at higher doses. Isoamyl alcohol and 2-phenylethanol suppressed plant biomass several times at doses of 50-100 µmol. Plant seed germination was most strongly suppressed by isoamyl alcohol and 2-phenylethanol. The substantial killing effect (at low doses) on D. melanogaster was exerted by the terpenes and the ketones 2-octanone and 2-pentanone. The obtained data showed new information about the biological activities of VOCs in relation to organisms belonging to different kingdoms.

11.
Microorganisms ; 8(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823644

RESUMO

Microbial volatile organic compounds (VOCs) are cell metabolites that affect many physiological functions of prokaryotic and eukaryotic organisms. Earlier we have demonstrated the inhibitory effects of soil bacteria volatiles, including ketones, on cyanobacteria. Cyanobacteria are very sensitive to ketone action. To investigate the possible molecular mechanisms of the ketone 2-nonanone influence on cyanobacterium Synechococcus elongatus PCC 7942, we applied a genetic approach. After Tn5-692 transposon mutagenesis, several 2-nonanone resistant mutants have been selected. Four different mutant strains were used for identification of the impaired genes (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732, Synpcc7942_0726) that encode correspondingly: 1) a murein-peptide ligase Mpl that is involved in the biogenesis of cyanobacteria cell wall; 2) a putative ABC transport system substrate-binding proteins MlaD, which participates in ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane by aberrantly localized phospholipids transport from outer to inner membranes of bacterial cells; 3) a conserved hypothetical protein that is encoding by gene belonging to phage gene cluster in Synechococcus elongatus PCC 7942 genome; 4) a protein containing the VRR-NUC (virus-type replication-repair nuclease) domain present in restriction-modification enzymes involved in replication and DNA repair. The obtained results demonstrated that 2-nonanone may have different targets in Synechococcus elongatus PCC 7942 cells. Among them are proteins involved in the biogenesis and functioning of the cyanobacteria cell wall (Synpcc7942_1362, Synpcc7942_0351, Synpcc7942_0732) and protein participating in stress response at DNA restriction-modification level (Synpcc7942_0726). This paper is the first report about the genes that encode protein products, which can be affected by 2-nonanone.

12.
ACS Appl Mater Interfaces ; 12(4): 4998-5007, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31895531

RESUMO

The study provides new evidence for Ag-coated polyester (PES) mediating Escherichia coli inactivation by way of genetically engineered E. coli (without porins, from now denoted porinless bacteria). This allows the quantification of the bactericidal kinetics induced by the Ag surface without the intervention of Ag ions. Bacterial inactivation mediated by Ag-PES was seen to be completed within 60 min. The samples were prepared by high-power impulse magnetron sputtering (HiPIMS) at different sputter powers. In anaerobic media, this process required 120 min. The amounts of ions (Ar+, Ag+, and Ag2+) generated during the deposition by direct current magnetron sputtering (DCMS) and HiPIMS were determined by mass spectrometry. The thickness of the Ag films sputtered on PES by DCMS (0.28 A) during 100 s was found to be 340 nm. Thicknesses of 250, 230, and 200 nm were found when sputtering with HiPIMS was tuned at 8, 17, and 30 A, respectively. By scanning transmission electron microscopy (STEM-HAADF), the atomic distribution of Ag and oxygen was detected. By X-ray photoelectron spectroscopy (XPS), a shift in the Ag oxidation state was observed within the bacterial inactivation period. This reveals redox catalysis within the time required for the total bacterial inactivation due to the interaction between the bacterial suspension and Ag-PES. Surface properties of the Ag-coated PES samples were additionally investigated by X-ray diffraction (XRD). The formation of Ag plasmon was detected by diffuse reflectance spectroscopy (DRS) and was a function of the applied sputtering energy. The indoor sunlight irradiation dose required to induce an accelerated bacterial inactivation was found to be 5-10 mW/cm2.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Escherichia coli/crescimento & desenvolvimento , Viabilidade Microbiana , Prata/química , Propriedades de Superfície
13.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736360

RESUMO

In the present work, we provide evidence for visible light irradiation of the Au/TiO2 nanoparticles' surface plasmon resonance band (SPR) leading to electron injection from the Au nanoparticles to the conduction band of TiO2. The Au/TiO2 SPR band is shown to greatly enhance the light absorption of TiO2 in the visible region. Evidence is presented for the light absorption by the Au/TiO2 plasmon bands leading to the dissolution of Au nanoparticles. This dissolution occurs concomitantly with the injection of the hot electrons generated by the Au plasmon into the conduction band of TiO2. The electron injection from the Au nanoparticles into TiO2 was followed by femtosecond spectroscopy. The formation of Au ions was further confirmed by the spectral shift of the transient absorption spectra of Au/TiO2. The spectral changes of the SPR band of Au/TiO2 nanoparticles induced by visible light were detected by spectrophotometer, and the morphological transformation of Au/TiO2 was revealed by electron microscopy techniques as well. Subsequently, the fate of the Au ions was sorted out during the growth and biofilm formation for some selected Gram-negative bacteria. This study compares the bactericidal mechanism of Au ions and Ag ions, which were found to be substantially different depending on the selected cell used as a probe.

14.
Biomed Res Int ; 2019: 3865780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31915691

RESUMO

In this study, we investigated the quorum sensing (QS) regulatory system of the psychrotrophic strain Serratia proteamaculans 94 isolated from spoiled refrigerated meat. The strain produced several N-acyl-L-homoserine-lactone (AHL) QS signal molecules, with N-(3-oxo-hexanoyl)-L-homoserine lactone and N-(3-hydroxy-hexanoyl)-L-homoserine lactone as two main types. The sprI and sprR genes encoding an AHL synthase and a receptor regulatory protein, respectively, were cloned and sequenced. Analysis of their nucleotide sequence showed that these genes were transcribed convergently and that their reading frames partly overlapped by 23 bp in the terminal regions. The genes were highly similar to the luxI/luxR-type QS genes of other Gram-negative bacteria. An spr-box (analog of the lux-box) was identified upstream of the sprR gene and found to be overlapped with the sequence of -10 sequence site in the promoter region of this gene. Inactivation of the sprI gene led to the absence of AHL synthesis, chitinolytic activity, and swimming motility; decrease of extracellular proteolytic activity; affected the cellular fatty acid composition; and reduced suppression of the fungal plant pathogen mycelium growth by volatile compounds emitted by strain S. proteamaculans 94. The data obtained demonstrated the important role of the QS system in the regulation of cellular processes in S. proteamaculans 94.


Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/metabolismo , Carne/microbiologia , Percepção de Quorum , Serratia/fisiologia , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Ligases/genética , Ligases/metabolismo , Serratia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Chem Commun (Camb) ; 53(65): 9093-9096, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28758649

RESUMO

New evidence is presented for the bacterial inactivation of E. coli presenting normal porins on sputtered Ag-Cu surfaces compared with similar E. coli porinless bacteria. Inactivation at a reduced rate was observed on the genetically modified porinless bacteria interacting via surface contact with metal/oxides without the intervention of metal-ions.


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Proteínas de Escherichia coli/química , Porinas/química , Prata/farmacologia , Antibacterianos/química , Cátions/química , Cátions/farmacologia , Cobre/química , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Cinética , Microrganismos Geneticamente Modificados/genética , Óxidos/química , Óxidos/farmacologia , Porinas/genética , Prata/química , Propriedades de Superfície
16.
APMIS ; 124(7): 586-94, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27214244

RESUMO

The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants.


Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/fisiologia , Biofilmes/efeitos dos fármacos , Pseudomonas/metabolismo , Serratia/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes/crescimento & desenvolvimento , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Cetonas/metabolismo , Cetonas/farmacologia , Carne/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Serratia/isolamento & purificação
17.
Biomed Res Int ; 2014: 125704, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006575

RESUMO

In previous research, volatile organic compounds (VOCs) emitted by various bacteria into the chemosphere were suggested to play a significant role in the antagonistic interactions between microorganisms occupying the same ecological niche and between bacteria and target eukaryotes. Moreover, a number of volatiles released by bacteria were reported to suppress quorum-sensing cell-to-cell communication in bacteria, and to stimulate plant growth. Here, volatiles produced by Pseudomonas and Serratia strains isolated mainly from the soil or rhizosphere exhibited bacteriostatic action on phytopathogenic Agrobacterium tumefaciens and fungi and demonstrated a killing effect on cyanobacteria, flies (Drosophila melanogaster), and nematodes (Caenorhabditis elegans). VOCs emitted by the rhizospheric Pseudomonas chlororaphis strain 449 and by Serratia proteamaculans strain 94 isolated from spoiled meat were identified using gas chromatography-mass spectrometry analysis, and the effects of the main headspace compounds--ketones (2-nonanone, 2-heptanone, 2-undecanone) and dimethyl disulfide--were inhibitory toward the tested microorganisms, nematodes, and flies. The data confirmed the role of bacterial volatiles as important compounds involved in interactions between organisms under natural ecological conditions.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Drosophila melanogaster/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Pseudomonas/química , Serratia/química , Compostos Orgânicos Voláteis/toxicidade , Agrobacterium/efeitos dos fármacos , Agrobacterium/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Fungos/efeitos dos fármacos , Cianeto de Hidrogênio/metabolismo
18.
APMIS ; 121(11): 1073-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23594262

RESUMO

In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms. Biofilm formation of P. aeruginosa PAO1 was enhanced 3- to 7-fold under the action of vanillin and epicatechin, and 2- to 2.5-fold in the presence of 4-hydroxybenzoic, gallic, cinnamic, sinapic, ferulic, and chlorogenic acids. At higher concentrations, these compounds displayed an inhibiting effect. Similar experiments carried out for comparison with Agrobacterium tumefaciens C58 showed the same pattern. Vanillin, 4-hydroxybenzoic, and gallic acids at concentrations within the range of 40 to 400 µg/mL increased the production of N-3-oxo-dodecanoyl-homoserine lactone in P. aeruginosa PAO1 which suggests a possible relationship between stimulation of biofilm formation and Las Quorum Sensing system of this bacterium. Using biosensors to detect N-acyl-homoserine lactones (AHL), we demonstrated that the plant phenolics studied did not mimic AHLs.


Assuntos
Biofilmes/efeitos dos fármacos , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Pseudomonas aeruginosa/fisiologia
19.
Environ Microbiol Rep ; 3(6): 698-704, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23761359

RESUMO

We show that volatile organic compounds (VOCs) produced by rhizospheric strains Pseudomonas fluorescens B-4117 and Serratia plymuthica IC1270 may act as inhibitors of the cell-cell communication quorum-sensing (QS) network mediated by N-acyl homoserine lactone (AHL) signal molecules produced by various bacteria, including strains of Agrobacterium, Chromobacterium, Pectobacterium and Pseudomonas. This quorum-quenching effect was observed when AHL-producing bacteria were treated with VOCs emitted by strains B-4117 and IC1270 or with dimethyl disulfide (DMDS), the major volatile produced by strain IC1270. LC-MS/MS analysis revealed that treatment of strains Pseudomonas chlororaphis 449, Pseudomonas aeruginosa PAO1 or Ps. fluorescens 2-79 with VOCs emitted by strain IC1270 or DMDS drastically decreases the amount of AHLs produced by these bacteria. Volatile organic compounds produced by Ps. chlororaphis 449 were able to suppress its own QS-induction activity, suggesting a negative interaction between VOCs and AHL molecules in the same strain. Quantitative RT-PCR analysis showed that treatment of Ps. chlororaphis 449 with VOCs emitted by cells of IC1270, B-4117 or 449 itself, or with DMDS, leads to significant suppression of transcription of AHL synthase genes phzI and csaI. Thus, along with AHLs, bacterial volatiles might be considered another type of signal molecule involved in microbial communication in the rhizosphere.

20.
Res Microbiol ; 160(5): 353-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19460431

RESUMO

Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexo Burkholderia cepacia/efeitos dos fármacos , Óxido Nítrico/farmacologia , Nitrofuranos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Complexo Burkholderia cepacia/fisiologia , Pseudomonas aeruginosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa