Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 289, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686151

RESUMO

BACKGROUND: Seed sanitization via chemical processes removes/reduces microbes from the external surfaces of the seed and thereby could have an impact on the plants' health or productivity. To determine the impact of seed sanitization on the plants' microbiome and pathogen persistence, sanitized and unsanitized seeds from two leafy green crops, red Romaine lettuce (Lactuca sativa cv. 'Outredgeous') and mizuna mustard (Brassica rapa var. japonica) were exposed to Escherichia coli and grown in controlled environment growth chambers simulating environmental conditions aboard the International Space Station. Plants were harvested at four intervals from 7 days post-germination to maturity. The bacterial communities of leaf and root were investigated using the 16S rRNA sequencing while quantitative polymerase chain reaction (qPCR) and heterotrophic plate counts were used to reveal the persistence of E. coli. RESULT: E. coli was detectable for longer periods of time in plants from sanitized versus unsanitized seeds and was identified in root tissue more frequently than in leaf tissue. 16S rRNA sequencing showed dynamic changes in the abundance of members of the phylum Proteobacteria, Firmicutes, and Bacteroidetes in leaf and root samples of both leafy crops. We observed minimal changes in the microbial diversity of lettuce or mizuna leaf tissue with time or between sanitized and unsanitized seeds. Beta-diversity showed that time had more of an influence on all samples versus the E. coli treatment. CONCLUSION: Our results indicated that the seed surface sanitization, a current requirement for sending seeds to space, could influence the microbiome. Insight into the changes in the crop microbiomes could lead to healthier plants and safer food supplementation.


Assuntos
Brassica rapa/microbiologia , Escherichia coli/crescimento & desenvolvimento , Lactuca/microbiologia , Sementes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Desinfecção , Ambiente Controlado , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Microbiota , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Fatores de Tempo
2.
Microorganisms ; 12(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38543566

RESUMO

Ionic silver (Ag+) is being investigated as a residual biocide for use in NASA spacecraft potable water systems on future crewed missions. This water will be used to irrigate future spaceflight crop production systems. We have evaluated the impact of three concentrations (31 ppb, 125 ppb, and 500 ppb) of ionic silver biocide solutions on lettuce in an arcillite (calcinated clay particle substrate) and hydroponic (substrate-less) growth setup after 28 days. Lettuce plant growth was reduced in the hydroponic samples treated with 31 ppb silver and severely stunted for samples treated at 125 ppb and 500 ppb silver. No growth defects were observed in arcillite-grown lettuce. Silver was detectable in the hydroponic-grown lettuce leaves at each concentration but was not detected in the arcillite-grown lettuce leaves. Specifically, when 125 ppb silver water was applied to a hydroponics tray, Ag+ was detected at an average amount of 7 µg/g (dry weight) in lettuce leaves. The increase in Ag+ corresponded with a decrease in several essential elements in the lettuce tissue (Ca, K, P, S). In the arcillite growth setup, silver did not impact the plant root zone microbiome in terms of alpha diversity and relative abundance between treatments and control. However, with increasing silver concentration, the alpha diversity increased in lettuce root samples and in the water from the hydroponics tray samples. The genera in the hydroponic root and water samples were similar across the silver concentrations but displayed different relative abundances. This suggests that ionic silver was acting as a selective pressure for the microbes that colonize the hydroponic water. The surviving microbes likely utilized exudates from the stunted plant roots as a carbon source. Analysis of the root-associated microbiomes in response to silver showed enrichment of metagenomic pathways associated with alternate carbon source utilization, fatty-acid synthesis, and the ppGpp (guanosine 3'-diphosphate 5'-diphosphate) stringent response global regulatory system that operates under conditions of environmental stress. Nutrient solutions containing Ag+ in concentrations greater than 31 ppb in hydroponic systems lacking cation-exchange capacity can severely impact crop production due to stunting of plant growth.

3.
Front Plant Sci ; 15: 1308150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464289

RESUMO

Bioregenerative food systems that routinely produce fresh, safe-to-eat crops onboard spacecraft can supplement the nutrition and variety of shelf-stable spaceflight food systems for use during future exploration missions (i.e., low earth orbit, Mars transit, lunar, and Martian habitats). However, current space crop production systems are not yet sustainable because they primarily utilize consumable granular media and, to date, operate like single crop cycle, space biology experiments where root modules are sanitized prior to launch and discarded after each grow-out. Moreover, real-time detection of the cleanliness of crops produced in spacecraft is not possible. A significant paradigm shift is needed in the design of future space crop production systems, as they transition from operating as single grow-out space biology experiments to becoming sustainable over multiple cropping cycles. Soilless nutrient delivery systems have been used to demonstrate post-harvest sanitization and inflight microbial monitoring technologies to enable sequential cropping cycles in spacecraft. Post-harvest cleaning and sanitization prevent the buildup of biofilms and ensure a favorable environment for seedling establishment of the next crop. Inflight microbial monitoring of food and watering systems ensures food safety in spaceflight food systems. A sanitization protocol, heat sterilization at 60°C for 1 h, and soaking for 12 h in 1% hydrogen peroxide, developed in this study, was compared against a standard hydroponic sanitization protocol during five consecutive crop cycles. Each cropping cycle included protocols for the cultivation of a crop to maturity, followed by post-harvest cleaning and inflight microbial monitoring. Microbial sampling of nutrient solution reservoirs, root modules, and plants demonstrated that the sanitization protocol could be used to grow safe-to-eat produce during multiple crop cycles. The cleanliness of the reservoir and root module surfaces measured with aerobic plate counts was verified in near real time using a qPCR-based inflight microbial monitoring protocol. Post-harvest sanitization and inflight microbial monitoring are expected to significantly transform the design of sustainable bioregenerative food and life support systems for future exploration missions beyond low earth orbit (LEO).

4.
Photosynth Res ; 118(1-2): 125-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23868401

RESUMO

Thrombolites are unlaminated carbonate deposits formed by the metabolic activities of microbial mats and can serve as potential models for understanding the molecular mechanisms underlying the formation of lithifying communities. To assess the metabolic complexity of these ecosystems, high throughput DNA sequencing of a thrombolitic mat metagenome was coupled with phenotypic microarray analysis. Functional protein analysis of the thrombolite community metagenome delineated several of the major metabolic pathways that influence carbonate mineralization including cyanobacterial photosynthesis, sulfate reduction, sulfide oxidation, and aerobic heterotrophy. Spatial profiling of metabolite utilization within the thrombolite-forming microbial mats suggested that the top 5 mm contained a more metabolically diverse and active community than the deeper within the mat. This study provides evidence that despite the lack of mineral layering within the clotted thrombolite structure there is a vertical gradient of metabolic activity within the thrombolitic mat community. This metagenomic profiling also serves as a foundation for examining the active role individual functional groups of microbes play in coordinating metabolisms that lead to mineralization.


Assuntos
Carbonatos/metabolismo , Cianobactérias/metabolismo , Metagenoma , Consórcios Microbianos , Cianobactérias/genética , Ecossistema , Genes Bacterianos , Análise em Microsséries , Análise de Sequência de DNA
5.
Biofilm ; 5: 100110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36922940

RESUMO

The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SµG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SµG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SµG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SµG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.

6.
NPJ Microgravity ; 7(1): 22, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140518

RESUMO

Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant health and production. To that end, we developed a methodology to investigate the transcriptional activities of the microbiome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results show that this enrichment approach was highly reproducible and could be an effective approach for the on-site detection of microbial transcriptional activity. Our results demonstrate the feasibility of using metatranscriptomics of enriched microbial RNA as a potential method for on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.

7.
Astrobiology ; 21(9): 1029-1048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33926205

RESUMO

A plant production system called Veggie was launched to the International Space Station (ISS) in 2014. In late 2015, during the growth of Zinnia hybrida cv. 'Profusion' in the Veggie hardware, plants developed chlorosis, leaf curling, fungal growth that damaged leaves and stems, and eventually necrosis. The development of symptoms was correlated to reduced air flow leading to a significant buildup of water enveloping the leaves and stems in microgravity. Symptomatic tissues were returned to Earth on 18 May 2016 and were immediately processed to determine the primary causal agent of the disease. The presumptive pathogen was identified as Fusarium oxysporum by morphological features of microconidia and conidiophores on symptomatic tissues; that is, by epifluorescent microscopy (EFM), scanning electron microscopy (SEM), metabolic microarrays, and ITS sequencing. Both EFM and SEM imaging of infected tissues showed that germinating conidia were capable of stomatal penetration and thus acted as the primary method for infecting host tissues. A series of ground-based pathogenicity assays were conducted with healthy Z. hybrida plants that were exposed to reduced-airflow and high-water stress (i.e., encased in sealed bags) or were kept in an unstressed configuration. Koch's postulates were successfully completed with Z. hybrida plants in the lab, but symptoms only matched ISS-flown symptomatic tissues when the plants were stressed with high-water exposure. Unstressed plants grown under similar lab conditions failed to develop the symptoms observed with plants on board the ISS. The overall results of the pathogenicity tests imply that F. oxysporum acted as an opportunistic pathogen on severely high-water stressed plants. The source of the opportunistic pathogen is not known, but virulent strains of F. oxysporum were not recovered from unused materials in the Veggie plant pillow growth units assayed after the flight.


Assuntos
Asteraceae/microbiologia , Fusarium , Doenças das Plantas/microbiologia , Astronave , Fungos , Folhas de Planta
8.
Life (Basel) ; 11(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072140

RESUMO

Closed environments such as the International Space Station (ISS) and spacecraft for other planned interplanetary destinations require sustainable environmental control systems for manned spaceflight and habitation. These systems require monitoring for microbial contaminants and potential pathogens that could foul equipment or affect the health of the crew. Technological advances may help to facilitate this environmental monitoring, but many of the current advances do not function as expected in reduced gravity conditions. The microbial monitoring system (RAZOR® EX) is a compact, semi-quantitative rugged PCR instrument that was successfully tested on the ISS using station potable water. After a series of technical demonstrations between ISS and ground laboratories, it was determined that the instruments functioned comparably and provided a sample to answer flow in approximately 1 hour without enrichment or sample manipulation. Post-flight, additional advancements were accomplished at Kennedy Space Center, Merritt Island, FL, USA, to expand the instrument's detections of targeted microorganisms of concern such as water, food-borne, and surface microbes including Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Escherichia coli, and Aeromonas hydrophilia. Early detection of contaminants and bio-fouling microbes will increase crew safety and the ability to make appropriate operational decisions to minimize exposure to these contaminants.

9.
Life (Basel) ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685431

RESUMO

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. 'Outredgeous'); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann's) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.

10.
Front Plant Sci ; 11: 199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210992

RESUMO

The ability to grow safe, fresh food to supplement packaged foods of astronauts in space has been an important goal for NASA. Food crops grown in space experience different environmental conditions than plants grown on Earth (e.g., reduced gravity, elevated radiation levels). To study the effects of space conditions, red romaine lettuce, Lactuca sativa cv 'Outredgeous,' plants were grown in Veggie plant growth chambers on the International Space Station (ISS) and compared with ground-grown plants. Multiple plantings were grown on ISS and harvested using either a single, final harvest, or sequential harvests in which several mature leaves were removed from the plants at weekly intervals. Ground controls were grown simultaneously with a 24-72 h delay using ISS environmental data. Food safety of the plants was determined by heterotrophic plate counts for bacteria and fungi, as well as isolate identification using samples taken from the leaves and roots. Molecular characterization was conducted using Next Generation Sequencing (NGS) to provide taxonomic composition and phylogenetic structure of the community. Leaves were also analyzed for elemental composition, as well as levels of phenolics, anthocyanins, and Oxygen Radical Absorbance Capacity (ORAC). Comparison of flight and ground tissues showed some differences in total counts for bacteria and yeast/molds (2.14 - 4.86 log10 CFU/g), while screening for select human pathogens yielded negative results. Bacterial and fungal isolate identification and community characterization indicated variation in the diversity of genera between leaf and root tissue with diversity being higher in root tissue, and included differences in the dominant genera. The only difference between ground and flight experiments was seen in the third experiment, VEG-03A, with significant differences in the genera from leaf tissue. Flight and ground tissue showed differences in Fe, K, Na, P, S, and Zn content and total phenolic levels, but no differences in anthocyanin and ORAC levels. This study indicated that leafy vegetable crops can produce safe, edible, fresh food to supplement to the astronauts' diet, and provide baseline data for continual operation of the Veggie plant growth units on ISS.

11.
Genome Announc ; 6(20)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773617

RESUMO

Here, we present the whole-genome sequences of two Fusarium oxysporum isolates cultured from infected Zinnia hybrida plants that were grown onboard the International Space Station (ISS).

12.
Astrobiology ; 17(4): 337-350, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28323456

RESUMO

Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 107 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m2), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions. Key Words: Planetary protection-Stratosphere-Balloon-Mars analog environment-E-MIST payload-Bacillus pumilus SAFR-032. Astrobiology 17, 337-350.


Assuntos
Atmosfera , Bacillus/fisiologia , Meio Ambiente Extraterreno , Marte , Astronave , Esporos Bacterianos/fisiologia , Planeta Terra , Viabilidade Microbiana/efeitos da radiação , Análise de Sequência de DNA , Raios Ultravioleta
13.
Sci Rep ; 3: 1340, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23439280

RESUMO

The microgravity environment during space flight imposes numerous adverse effects on animal and microbial physiology. It is unclear, however, how microgravity impacts those cellular interactions between mutualistic microbes and their hosts. Here, we used the symbiosis between the host squid Euprymna scolopes and its luminescent bacterium Vibrio fischeri as a model system. We examined the impact of simulated microgravity on the timeline of bacteria-induced development in the host light organ, the site of the symbiosis. To simulate the microgravity environment, host squid and symbiosis-competent bacteria were incubated together in high-aspect ratio rotating wall vessel bioreactors and examined throughout the early stages of the bacteria-induced morphogenesis. The host innate immune response was suppressed under simulated microgravity; however, there was an acceleration of bacteria-induced apoptosis and regression in the host tissues. These results suggest that the space flight environment may alter the cellular interactions between animal hosts and their natural healthy microbiome.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Simbiose , Simulação de Ausência de Peso , Aliivibrio fischeri/crescimento & desenvolvimento , Animais , Apoptose , Feminino , Hemócitos , Luminescência , Modelos Biológicos , Polissacarídeos Bacterianos/imunologia
14.
PLoS One ; 7(5): e38229, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662280

RESUMO

BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the physiology of the mats, as well as new insights into the biological processes associated with carbonate precipitation in modern marine stromatolites.


Assuntos
Sedimentos Geológicos/microbiologia , Metaboloma , Metagenômica , Bahamas , Metabolismo dos Carboidratos , Biologia Computacional/métodos , Metagenoma , Anotação de Sequência Molecular , Fenótipo , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa