Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776858

RESUMO

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Criança , Lactente , Humanos , Pré-Escolar , SARS-CoV-2/metabolismo , Multiômica , Citocinas/metabolismo , Interferon-alfa , Imunidade nas Mucosas
2.
Nat Immunol ; 24(1): 186-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536106

RESUMO

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , Pandemias , Imunidade Adaptativa , Tonsila Palatina , Anticorpos Antivirais
3.
Cell ; 178(6): 1313-1328.e13, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491384

RESUMO

Emerging evidence indicates a central role for the microbiome in immunity. However, causal evidence in humans is sparse. Here, we administered broad-spectrum antibiotics to healthy adults prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA responses. In addition, in both studies antibiotics treatment resulted in (1) enhanced inflammatory signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased dendritic cell activation; (2) divergent metabolic trajectories, with a 1,000-fold reduction in serum secondary bile acids, which was highly correlated with AP-1/NR4A signaling and inflammasome activation. Multi-omics integration revealed significant associations between bacterial species and metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antivirais/imunologia , Microbioma Gastrointestinal/fisiologia , Imunidade/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Formação de Anticorpos , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Masculino , Adulto Jovem
4.
Nat Immunol ; 22(11): 1452-1464, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611361

RESUMO

There is limited understanding of the viral antibody fingerprint following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children. Herein, SARS-CoV-2 proteome-wide immunoprofiling of children with mild/moderate or severe coronavirus disease 2019 (COVID-19) versus multisystem inflammatory syndrome in children versus hospitalized control patients revealed differential cytokine responses, IgM/IgG/IgA epitope diversity, antibody binding and avidity. Apart from spike and nucleocapsid, IgG/IgA recognized epitopes in nonstructural protein (NSP) 2, NSP3, NSP12-NSP14 and open reading frame (ORF) 3a-ORF9. Peptides representing epitopes in NSP12, ORF3a and ORF8 demonstrated SARS-CoV-2 serodiagnosis. Antibody-binding kinetics with 24 SARS-CoV-2 proteins revealed antibody parameters that distinguish children with mild/moderate versus severe COVID-19 or multisystem inflammatory syndrome in children. Antibody avidity to prefusion spike correlated with decreased illness severity and served as a clinical disease indicator. The fusion peptide and heptad repeat 2 region induced SARS-CoV-2-neutralizing antibodies in rabbits. Thus, we identified SARS-CoV-2 antibody signatures in children associated with disease severity and delineate promising serodiagnostic and virus neutralization targets. These findings might guide the design of serodiagnostic assays, prognostic algorithms, therapeutics and vaccines in this important but understudied population.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Adolescente , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/diagnóstico , Criança , Pré-Escolar , Progressão da Doença , Epitopos/metabolismo , Feminino , Hospitalização , Humanos , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Masculino , Prognóstico , Proteoma , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
5.
Nature ; 614(7949): 752-761, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599369

RESUMO

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Assuntos
COVID-19 , Imunidade Inata , Memória Imunológica , Vacinas contra Influenza , Caracteres Sexuais , Linfócitos T , Vacinação , Feminino , Humanos , Masculino , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Interleucina-15/imunologia , Receptores Toll-Like/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Monócitos , Imunidade Inata/genética , Imunidade Inata/imunologia , Análise de Célula Única , Voluntários Saudáveis
6.
Nature ; 594(7864): 553-559, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33971664

RESUMO

Betacoronaviruses caused the outbreaks of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome, as well as the current pandemic of SARS coronavirus 2 (SARS-CoV-2)1-4. Vaccines that elicit protective immunity against SARS-CoV-2 and betacoronaviruses that circulate in animals have the potential to prevent future pandemics. Here we show that the immunization of macaques with nanoparticles conjugated with the receptor-binding domain of SARS-CoV-2, and adjuvanted with 3M-052 and alum, elicits cross-neutralizing antibody responses against bat coronaviruses, SARS-CoV and SARS-CoV-2 (including the B.1.1.7, P.1 and B.1.351 variants). Vaccination of macaques with these nanoparticles resulted in a 50% inhibitory reciprocal serum dilution (ID50) neutralization titre of 47,216 (geometric mean) for SARS-CoV-2, as well as in protection against SARS-CoV-2 in the upper and lower respiratory tracts. Nucleoside-modified mRNAs that encode a stabilized transmembrane spike or monomeric receptor-binding domain also induced cross-neutralizing antibody responses against SARS-CoV and bat coronaviruses, albeit at lower titres than achieved with the nanoparticles. These results demonstrate that current mRNA-based vaccines may provide some protection from future outbreaks of zoonotic betacoronaviruses, and provide a multimeric protein platform for the further development of vaccines against multiple (or all) betacoronaviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Betacoronavirus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Resfriado Comum/prevenção & controle , Reações Cruzadas/imunologia , Pandemias , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Animais , COVID-19/epidemiologia , Vacinas contra COVID-19/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca/imunologia , Masculino , Modelos Moleculares , Nanopartículas/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Traqueia , Vacinação
7.
PLoS Pathog ; 18(4): e1010468, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35385545

RESUMO

An overreactive inflammatory response and coagulopathy are observed in patients with severe form of COVID-19. Since increased levels of D-dimer (DD) are associated with coagulopathy in COVID-19, we explored whether DD contributes to the aberrant cytokine responses. Here we show that treatment of healthy human monocytes with DD induced a dose dependent increase in production of pyrogenic mediator, Prostaglandin E2 (PGE2) and inflammatory cytokines, IL-6 and IL-8. The DD-induced PGE2 and inflammatory cytokines were enhanced significantly by co-treatment with immune complexes (IC) of SARS CoV-2 recombinant S protein or of pseudovirus containing SARS CoV-2 S protein (PVCoV-2) coated with spike-specific chimeric monoclonal antibody (MAb) containing mouse variable and human Fc regions. The production of PGE2 and cytokines in monocytes activated with DD and ICs was sensitive to the inhibitors of ß2 integrin and FcγRIIa, and to the inhibitors of calcium signaling, Mitogen-Activated Protein Kinase (MAPK) pathway, and tyrosine-protein kinase. Importantly, strong increase in PGE2 and in IL-6/IL-8/IL-1ß cytokines was observed in monocytes activated with DD in the presence of IC of PVCoV-2 coated with plasma from hospitalized COVID-19 patients but not from healthy donors. The IC of PVCoV-2 with convalescent plasma induced much lower levels of PGE2 and cytokines compared with plasma from hospitalized COVID-19 patients. PGE2 and IL-6/IL-8 cytokines produced in monocytes activated with plasma-containing IC, correlated well with the levels of spike binding antibodies and not with neutralizing antibody titers. Our study suggests that a combination of high levels of DD and high titers of spike-binding antibodies that can form IC with SARS CoV-2 viral particles might accelerate the inflammatory status of lung infiltrating monocytes leading to increased lung pathology in patients with severe form of COVID-19.


Assuntos
COVID-19 , Monócitos , Animais , Complexo Antígeno-Anticorpo , COVID-19/terapia , Citocinas/metabolismo , Dinoprostona/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Imunização Passiva , Fatores Imunológicos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
8.
Cytokine ; 173: 156447, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041875

RESUMO

Lung macrophages are the first line of defense against invading respiratory pathogens including SARS-CoV-2, yet activation of macrophage in the lungs can lead to hyperinflammatory immune response seen in severe COVID-19. Here we used human M1 and M2 polarized macrophages as a surrogate model of inflammatory and regulatory macrophages and explored whether immune complexes (IC) containing spike-specific IgG can trigger aberrant cytokine responses in macrophages in the lungs and associated lymph nodes. We show that IC of SARS-CoV-2 recombinant S protein coated with spike-specific monoclonal antibody induced production of Prostaglandin E2 (PGE2) in non-polarized (M0) and in M1 and M2-type polarized human macrophages only in the presence of D-dimer (DD), a fibrinogen degradation product, associated with coagulopathy in COVID-19. Importantly, an increase in PGE2 was also observed in macrophages activated with DD and IC of SARS-CoV-2 pseudovirions coated with plasma from hospitalized COVID-19 patients but not from healthy subjects. Overall, the levels of PGE2 in macrophages activated with DD and IC were as follows: M1≫M2>M0 and correlated with the levels of spike binding antibodies and not with neutralizing antibody titers. All three macrophage subsets produced similar levels of IL-6 following activation with DD+IC, however TNFα, IL-1ß, and IL-10 cytokines were produced by M2 macrophages only. Our study suggests that high titers of spike or virion containing IC in the presence of coagulation byproducts (DD) can promote inflammatory response in macrophages in the lungs and associated lymph nodes and contribute to severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Complexo Antígeno-Anticorpo/metabolismo , Mediadores da Inflamação/metabolismo , Dinoprostona/metabolismo , COVID-19/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo
9.
Clin Infect Dis ; 76(3): e503-e506, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925647

RESUMO

Our study demonstrates that neither 2020 convalescent plasma (CP) nor 2019/2020 intravenous immunoglobulin (IVIG) neutralizes Omicron subvariants BA.1 to BA.5. In contrast, 2020 hyperimmune anti-severe acute respiratory syndrome coronavirus 2 IVIG (hCoV-2IG) lots neutralized Omicron variants of concern, similar to results with 2022 CP from BA.1 breakthrough infections. Therefore, high-titer hCoV-2IG and CP could be evaluated for treatment of high-risk individuals infected with circulating Omicron subvariants.


Assuntos
COVID-19 , Imunoglobulinas Intravenosas , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , SARS-CoV-2 , Soroterapia para COVID-19
10.
J Virol ; 96(5): e0172521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985999

RESUMO

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Doenças Respiratórias , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/normas , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Doenças Respiratórias/imunologia , Suínos , Vacinas de Produtos Inativados/imunologia
11.
J Infect Dis ; 226(4): 655-663, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106573

RESUMO

Passive antibody immunotherapeutics directed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are promising countermeasures for protection and treatment of coronavirus disease 2019 (COVID-19). SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) can impact the clinical efficacy of immunotherapeutics. A fully human polyclonal antibody immunotherapeutic purified from plasma of transchromosomic (Tc) bovines hyperimmunized with SARS-CoV-2 WA-1 spike (SAB-185) is being assessed for efficacy in a phase 2/3 clinical trial when different circulating SARS-CoV-2 variants predominated. We evaluated antibody binding, avidity maturation, and SARS-CoV-2 VOCs/VOIs virus-neutralizing capacity of convalescent plasma compared with different lots of SAB-185 and individual Tc bovine sera sequentially obtained after each vaccination against Alpha, Epsilon, Iota, Gamma, Beta, Kappa, and Delta variants. In contrast to convalescent plasma, sera and SAB-185 derived from hyperimmunized Tc bovines demonstrated higher antibody avidity and more potent cross-neutralizing activity of VOCs/VOIs. Thus, SAB-185 is a potential promising therapeutic candidate for the treatment of patients infected with SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Afinidade de Anticorpos , COVID-19/terapia , Bovinos , Humanos , Imunização Passiva , Imunoglobulina G , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
12.
BMC Bioinformatics ; 23(1): 547, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536276

RESUMO

As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.


Assuntos
COVID-19 , Humanos , Sequência de Bases , SARS-CoV-2 , Análise por Conglomerados , Bases de Dados Factuais
13.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34159627

RESUMO

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Brasil , Estudo de Associação Genômica Ampla , Humanos , Mutação , Filogenia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
14.
Clin Infect Dis ; 74(2): 327-334, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33861337

RESUMO

Convalescent plasma (CP) have been used for treatment of coronavirus disease 2019 (COVID-19), but their effectiveness varies significantly. Moreover, the impact of CP treatment on the composition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 patients and antibody markers that differentiate between those who survive and those who succumb to the COVID-19 disease are not well understood. Herein, we performed longitudinal analysis of antibody profile on 115 sequential plasma samples from 16 hospitalized COVID-19 patients treated with either CP or standard of care, only half of them survived. Differential antibody kinetics was observed for antibody binding, immunoglobulin M/immunoglobulin G/immunoglobulin A (IgM/IgG/IgA) distribution, and affinity maturation in "survived" versus "fatal" COVID-19 patients. Surprisingly, CP treatment did not predict survival. Strikingly, marked decline in neutralization titers was observed in the fatal patients prior to death, and convalescent plasma treatment did not reverse this trend. Furthermore, irrespective of CP treatment, higher antibody affinity to the SARS-CoV-2 prefusion spike was associated with survival outcome. Additionally, sustained elevated IgA response was associated with fatal outcome in these COVID-19 patients. These findings propose that treatment of COVID-19 patients with convalescent plasma should be carefully targeted, and effectiveness of treatment may depend on the clinical and immunological status of COVID-19 patients, as well as the quality of the antibodies in the convalescent plasma.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva , Soroterapia para COVID-19
15.
Clin Infect Dis ; 75(9): 1645-1648, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35445250

RESUMO

Our study demonstrates that children who developed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination-induced myocarditis and may not receive another vaccination, could be susceptible to infection with Omicron and emerging variants. We observed higher neutralizing antibody titers in myocarditis patients vs. healthy vaccinated children, but significantly lower neutralization titers against Omicron in both groups.


Assuntos
COVID-19 , Miocardite , Criança , Humanos , SARS-CoV-2 , Testes de Neutralização , Anticorpos Antivirais , Miocardite/etiologia , COVID-19/prevenção & controle , Vacinação/efeitos adversos , Anticorpos Neutralizantes
16.
Clin Infect Dis ; 75(1): e459-e465, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34554235

RESUMO

BACKGROUND: After the failure of antibody therapies in treating hospitalized patients with coronavirus disease 2019 (COVID-19), we investigated the impact of viral replication on the pharmacokinetics and efficacy of a hyperimmune severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin (CoVIG) product in treating SARS-CoV-2 infection using an adult Syrian hamster model. METHODS: The CoVIG was manufactured from plasma donors who had recovered from COVID-19. The dose used (400 mg/kg) was based on the dose given in clinical trials to hospitalized patients with COVID-19. Hamsters were given a single dose of CoVIG 2 days after challenge with the SARS-CoV-2 virus (isolate NY/PV08410/2020), followed by sampling of blood, nasal, tracheal, and lung tissues at different time points. The blood samples were assayed for anti-SARS-CoV-2 spike binding and used to calculate pharmacokinetic (PK) parameters. Nasal wash, tracheal, and lung tissue samples were assayed for viral replication by polymerase chain reaction (subgenomic messenger RNA). RESULTS: CoVIG-treated hamsters showed a reduction in viral replication in the lower respiratory tract, but minimal reduction in the upper respiratory tract, after challenge with SARS-CoV-2. Challenge resulted in altered PK parameters proportionate to viral replication, resulting in decreased area under the curve, accelerated clearance, and shorter half-life of CoVIG. CONCLUSIONS: These data indicate that in the presence of actively replicating SARS-CoV-2 virus, PK parameters are altered and should trigger an adjustment in CoVIG dosing.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Animais , Cricetinae , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Pulmão , Mesocricetus , SARS-CoV-2
17.
Proc Natl Acad Sci U S A ; 116(30): 15194-15199, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296560

RESUMO

Several next-generation (universal) influenza vaccines and broadly neutralizing antibodies (bNAbs) are in clinical development. Some of these mediate inhibitions of virus replication at the postentry stage or use Fc-dependent mechanisms. Nonneutralizing antibodies have the potential to mediate enhancement of viral infection or disease. In the current study, two monoclonal antibodies (MAbs) 72/8 and 69/1, enhanced respiratory disease (ERD) in mice following H3N2 virus challenge by demonstrating increased lung pathology and changes in lung cytokine/chemokine levels. MAb 78/2 caused changes in the lung viral loads in a dose-dependent manner. Both MAbs increased HA sensitivity to trypsin cleavage at a higher pH range, suggesting MAb-induced conformational changes. pHrodo-labeled virus particles' entry and residence time in the endocytic compartment were tracked during infection of Madin-Darby canine kidney (MDCK) cells. Both MAbs reduced H3N2 virus residence time in the endocytic pathway, suggesting faster virus fusion kinetics. Structurally, 78/2 and 69/1 Fabs bound the globular head or base of the head domain of influenza hemagglutinin (HA), respectively, and induced destabilization of the HA stem domain. Together, this study describes Mab-induced destabilization of the influenza HA stem domain, faster kinetics of influenza virus fusion, and ERD in vivo. The in vivo animal model and in vitro assays described could augment preclinical safety evaluation of antibodies and next-generation influenza vaccines that generate antibodies which do not block influenza virus-receptor interaction.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Anticorpos Antivirais/efeitos adversos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Pulmão/virologia , Infecções por Orthomyxoviridae/virologia , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Cães , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Ligação Proteica , Proteólise , Carga Viral/efeitos dos fármacos , Vírion/efeitos dos fármacos , Vírion/imunologia , Vírion/patogenicidade , Replicação Viral/efeitos dos fármacos
18.
J Infect Dis ; 221(4): 636-646, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31745552

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) infection causes significant morbidity in hematopoietic cell transplant (HCT) recipients. However, antibody responses that correlate with recovery from RSV disease are not fully understood. METHODS: In this study, antibody repertoire in paired serum and nasal wash samples from acutely RSV-A-infected HCT recipients who recovered early (<14 days of RSV shedding) were compared with late-recovered patients (≥14 days of shedding) using gene fragment phage display libraries and surface plasmon resonance. RESULTS: Anti-F serum responses were similar between these 2 groups for antibody repertoires, neutralization titers, anti-F binding antibodies (prefusion and postfusion proteins), antibody avidity, and binding to specific antigenic sites. In contrast, nasal washes from early-recovered individuals demonstrated higher binding to F peptide containing p27. While the serum RSV G antibody repertoires in the 2 groups were similar, the strongest difference between early-recovered and late-recovered patients was observed in the titers of nasal wash antibodies, especially binding to the central conserved domain. Most importantly, a significantly higher antibody affinity to RSV G was observed in nasal washes from early-recovered individuals compared with late-recovered HCT recipients. CONCLUSIONS: These findings highlight the importance of mucosal antibodies in resolution of RSV-A infection in the upper respiratory tract.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Transplante de Células-Tronco Hematopoéticas , Mucosa Respiratória/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Transplantados , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/sangue , Afinidade de Anticorpos , Humanos , Imunoglobulina G/imunologia , Idiótipos de Imunoglobulinas/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Proteínas Virais de Fusão/imunologia , Eliminação de Partículas Virais
19.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728266

RESUMO

Memory B cells (MBCs) are key determinants of the B cell response to influenza virus infection and vaccination, but the effect of different forms of influenza antigen exposure on MBC populations has received little attention. We analyzed peripheral blood mononuclear cells and plasma collected following human H3N2 influenza infection to investigate the relationship between hemagglutinin-specific antibody production and changes in the size and character of hemagglutinin-reactive MBC populations. Infection produced increased concentrations of plasma IgG reactive to the H3 head of the infecting virus, to the conserved stalk, and to a broad chronological range of H3s consistent with original antigenic sin responses. H3-reactive IgG MBC expansion after infection included reactivity to head and stalk domains. Notably, expansion of H3 head-reactive MBC populations was particularly broad and reflected original antigenic sin patterns of IgG production. Findings also suggest that early-life H3N2 infection "imprints" for strong H3 stalk-specific MBC expansion. Despite the breadth of MBC expansion, the MBC response included an increase in affinity for the H3 head of the infecting virus. Overall, our findings indicate that H3-reactive MBC expansion following H3N2 infection is consistent with maintenance of response patterns established early in life, but nevertheless includes MBC adaptation to the infecting virus.IMPORTANCE Rapid and vigorous virus-specific antibody responses to influenza virus infection and vaccination result from activation of preexisting virus-specific memory B cells (MBCs). Understanding the effects of different forms of influenza virus exposure on MBC populations is therefore an important guide to the development of effective immunization strategies. We demonstrate that exposure to the influenza hemagglutinin via natural infection enhances broad protection through expansion of hemagglutinin-reactive MBC populations that recognize head and stalk regions of the molecule. Notably, we show that hemagglutinin-reactive MBC expansion reflects imprinting by early-life infection and that this might apply to stalk-reactive, as well as to head-reactive, MBCs. Our findings provide experimental support for the role of MBCs in maintaining imprinting effects and suggest a mechanism by which imprinting might confer heterosubtypic protection against avian influenza viruses. It will be important to compare our findings to the situation after influenza vaccination.


Assuntos
Linfócitos B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Memória Imunológica , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Estações do Ano , Anticorpos Antivirais/imunologia , Humanos , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1
20.
PLoS Pathog ; 14(8): e1007262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142227

RESUMO

Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract disease in infants. Previously, we elucidated the antibody repertoire following primary RSV infection in infants. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes from RSV bound 100-fold more phages within attachment protein (G) following primary RSV infection. The G-reactive epitopes spanned the N- and C-termini of G ectodomain, in addition to the central conserved domain (CCD). In the current study, we examined the contribution of antigenic regions of G outside of the CCD to RSV-specific immunity. We evaluated the immunogenicity, neutralization and protective efficacy of all RSV-G antigenic sites identified following primary RSV infection using recombinant E. coli expressed G ectodomain (REG), CCD-deleted G ectodomain (REG ΔCCD), N- and C-terminal G subdomains, and antigenic site peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice that bound fully glycosylated Recombinant Mammalian expressed G ectodomain (RMG) and intact RSV virion particles but minimal in vitro neutralization titers compared with the intact G ectodomain. Vaccinated mice were challenged intranasally with RSV-A2 Line 19F. Viral replication in nasal cavity and lungs was significantly reduced in vaccinated animals compared to unimmunized controls. Control of viral loads post-RSV challenge correlated with serum antibody binding to the virus particles. In addition, very low Th2/Th1 cytokine ratios were found in the lungs of REG ΔCCD vaccinated mice after challenge. These data demonstrate the presence of multiple protective sites in RSV G protein outside of the CCD that could contribute to the development of a bacterially produced unglycosylated G protein as safe and protective vaccine against RSV disease.


Assuntos
Anticorpos Neutralizantes , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Células A549 , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Células Cultivadas , Sequência Conservada/genética , Cisteína/química , Cisteína/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Coelhos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/síntese química , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/genética , Vírus Sincicial Respiratório Humano/química , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa