RESUMO
Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/metabolismo , Hidrólise , Antibacterianos/metabolismo , Glicopeptídeos/metabolismo , Infecções Estafilocócicas/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Pseudomonas aeruginosa poses a significant threat to immunocompromised individuals and those with cystic fibrosis. Treatment relies on antibiotics, but persistent infections occur due to intrinsic and acquired resistance of P. aeruginosa towards multiple classes of antibiotics. To date, there are no licensed vaccines for this pathogen, prompting the urgent need for novel treatment approaches to combat P. aeruginosa infection and persistence. Here we validated AAV vectored immunoprophylaxis as a strategy to generate long-term plasma and mucosal expression of highly protective monoclonal antibodies (mAbs) targeting the exopolysaccharide Psl (Cam-003) and the PcrV (V2L2MD) component of the type-III secretion system injectosome either as single mAbs or together as a bispecific mAb (MEDI3902) in a mouse model. When administered intramuscularly, AAV-αPcrV, AAV-αPsl, and AAV-MEDI3902 significantly protected mice challenged intranasally with a lethal dose of P. aeruginosa strains PAO1 and PA14 and reduced bacterial burden and dissemination to other organs. While all AAV-mAbs provided protection, AAV-αPcrV and AAV-MEDI3902 provided 100% and 87.5% protection from a lethal challenge with 4.47 × 107 CFU PAO1 and 87.5% and 75% protection from a lethal challenge with 3 × 107 CFU PA14, respectively. Serum concentrations of MEDI3902 were ~10× lower than that of αPcrV, but mice treated with this vector showed a greater reduction in bacterial dissemination to the liver, lung, spleen, and blood compared to other AAV-mAbs. These results support further investigation into the use of AAV vectored immunoprophylaxis to prevent and treat P. aeruginosa infections and other bacterial pathogens of public health concern for which current treatment strategies are limited.
Assuntos
Anticorpos Monoclonais , Dependovirus , Vetores Genéticos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Dependovirus/genética , Dependovirus/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/terapia , Anticorpos Monoclonais/imunologia , Anticorpos Biespecíficos , Feminino , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Pneumonia Bacteriana/prevenção & controle , Pneumonia Bacteriana/terapia , Pneumonia Bacteriana/imunologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de PorosRESUMO
Listeria monocytogenes is a pathogenic foodborne bacterium that is a significant cause of mortality associated with foodborne illness and causes many food recalls attributed to a bacteriological cause. Their ability to form biofilms contributes to the persistence of Listeria spp. in food processing environments. When growing as biofilms, L. monocytogenes are more resistant to sanitizers used in the food industry, such as benzalkonium chloride (BAC), as well as to physical stresses like desiccation and starvation. Lytic phages of Listeria are antagonistic to a broad range of Listeria spp. and may, therefore, have utility in reducing the occurrence of Listeria-associated food recalls by preventing food contamination. We screened nine closely related Listeria phages, including the commercially available Listex P100, for host range and ability to degrade microtiter plate biofilms of L. monocytogenes ATCC 19111 (serovar 1/2a). One phage, CKA15, was selected and shown to rapidly adsorb to its host under conditions relevant to applying the phage in dairy processing environments. Under simulated dairy processing conditions (SDPC), CKA15 caused a 2-log reduction in Lm19111 biofilm bacteria. This work supports the biosanitation potential of phage CKA15 and provides a basis for further investigation of phage-bacteria interactions in biofilms grown under SDPC. IMPORTANCE: Listeria monocytogenes is a pathogenic bacterium that is especially dangerous for children, the elderly, pregnant women, and immune-compromised people. Because of this, the food industry takes its presence in their plants seriously. Food recalls due to L. monocytogenes are common with a high associated economic cost. In food-processing plants, Listeria spp. typically reside in biofilms, which are structures produced by bacteria that shield them from environmental stressors and are often attached to surfaces. The significance of our work is that we show a bacteriophage-a virus-infecting bacteria-can reduce Listeria counts by two orders of magnitude when the bacterial biofilms were grown under simulated dairy processing conditions. This work provides insights into how phages may be tested and used to develop biosanitizers that are effective but are not harmful to the environment or human health.
Assuntos
Bacteriófagos , Listeria monocytogenes , Listeria , Gravidez , Criança , Feminino , Humanos , Idoso , Biofilmes , Contaminação de Alimentos/análise , Manipulação de Alimentos , Microbiologia de AlimentosRESUMO
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.
Assuntos
Alginatos , Periplasma , Polissacarídeo-Liases , Pseudomonas aeruginosa , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Homeostase , Humanos , Periplasma/enzimologia , Periplasma/metabolismo , Polímeros/metabolismo , Polissacarídeo-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismoRESUMO
The age-old saying, seeing is believing, could not be truer when we think about the value of imaging interactions between epithelial cells and bacterial pathogens. Imaging and culturing techniques have vastly improved over the years, and the breadth and depth of these methods is ever increasing. These technical advances have benefited researchers greatly; however, due to the large number of potential model systems and microscopy techniques to choose from, it can be overwhelming to select the most appropriate tools for your research question. This Review discusses a variety of available epithelial culturing methods and quality control experiments that can be performed, and outlines various options commonly used to fluorescently label bacterial and mammalian cell components. Both light- and electron-microscopy techniques are reviewed, with descriptions of both technical aspects and common applications. Several examples of imaging bacterial pathogens and their interactions with epithelial cells are discussed to provide researchers with an idea of the types of biological questions that can be successfully answered by using microscopy.
Assuntos
Infecções Bacterianas , Interações Hospedeiro-Patógeno , Animais , Bactérias , Células Epiteliais , MicroscopiaRESUMO
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Assuntos
Infecções Bacterianas , Bacteriófagos , Intoxicação Alimentar por Salmonella , Animais , Humanos , Aves Domésticas , Salmonella , Bactérias , AntibacterianosRESUMO
Bacterial lung infections lead to greater than 4 million deaths per year with antibiotic treatments driving an increase in antibiotic resistance and a need to establish new therapeutic approaches. Recently, we have generated mouse and rat stem cell-derived alveolar-like macrophages (ALMs), which like primary alveolar macrophages (1'AMs), phagocytose bacteria and promote airway repair. Our aim was to further characterize ALMs and determine their bactericidal capabilities. The characterization of ALMs showed that they share known 1'AM cell surface markers, but unlike 1'AMs are highly proliferative in vitro. ALMs effectively phagocytose and kill laboratory strains of P. aeruginosa (P.A.), E. coli (E.C.) and S. aureus, and clinical strains of P.A. In vivo, ALMs remain viable, adapt additional features of native 1'AMs, but proliferation is reduced. Mouse ALMs phagocytose P.A. and E.C. and rat ALMs phagocytose and kill P.A. within the lung 24 h post-instillation. In a pre-clinical model of P.A.-induced lung injury, rat ALM administration mitigated weight loss and resolved lung injury observed seven days post-instillation. Collectively, ALMs attenuate pulmonary bacterial infections and promote airway repair. ALMs could be utilized as an alternative or adjuvant therapy where current treatments are ineffective against antibiotic-resistant bacteria or to enhance routine antibiotic delivery.
Assuntos
Lesão Pulmonar , Infecções por Pseudomonas , Animais , Antibacterianos/farmacologia , Escherichia coli , Pulmão/microbiologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Ratos , Staphylococcus aureus , Células-TroncoRESUMO
Our understanding of the biofilm matrix components utilized by Gram-positive bacteria, and the signalling pathways that regulate their production are largely unknown. In a companion study, we developed a computational pipeline for the unbiased identification of homologous bacterial operons and applied this algorithm to the analysis of synthase-dependent exopolysaccharide biosynthetic systems. Here, we explore the finding that many species of Gram-positive bacteria have operons with similarity to the Pseudomonas aeruginosa pel locus. Our characterization of the pelDEADAFG operon from Bacillus cereus ATCC 10987, presented herein, demonstrates that this locus is required for biofilm formation and produces a polysaccharide structurally similar to Pel. We show that the degenerate GGDEF domain of the B. cereus PelD ortholog binds cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP), and that this binding is required for biofilm formation. Finally, we identify a diguanylate cyclase, CdgF, and a c-di-GMP phosphodiesterase, CdgE, that reciprocally regulate the production of Pel. The discovery of this novel c-di-GMP regulatory circuit significantly contributes to our limited understanding of c-di-GMP signalling in Gram-positive organisms. Furthermore, conservation of the core pelDEADAFG locus amongst many species of bacilli, clostridia, streptococci, and actinobacteria suggests that Pel may be a common biofilm matrix component in many Gram-positive bacteria.
Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Óperon , Polissacarídeos/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Filogenia , Conformação ProteicaRESUMO
Peptidoglycan (PG) is a critical component of the bacterial cell wall and is composed of a repeating ß-1,4-linked disaccharide of N-acetylglucosamine and N-acetylmuramic acid appended with a highly conserved stem peptide. In Gram-negative bacteria, PG is assembled in the cytoplasm and exported into the periplasm where it undergoes considerable maturation, modification, or degradation depending on the growth phase or presence of environmental stressors. These modifications serve important functions in diverse processes, including PG turnover, cell elongation/division, and antibiotic resistance. Conventional methods for analyzing PG composition are complex and time-consuming. We present here a streamlined MS-based method that combines differential analysis with statistical 1D annotation approaches to quantitatively compare PGs produced in planktonic- and biofilm-cultured Pseudomonas aeruginosa We identified a core assembly of PG that is present in high abundance and that does not significantly differ between the two growth states. We also identified an adaptive PG assembly that is present in smaller amounts and fluctuates considerably between growth states in response to physiological changes. Biofilm-derived adaptive PG exhibited significant changes compared with planktonic-derived PG, including amino acid substitutions of the stem peptide and modifications that indicate changes in the activity of amidases, deacetylases, and lytic transglycosylases. The results of this work also provide first evidence of de-N-acetylated muropeptides from P. aeruginosa The method developed here offers a robust and reproducible workflow for accurately determining PG composition in samples that can be used to assess global PG fluctuations in response to changing growth conditions or external stimuli.
Assuntos
Biofilmes , Peptidoglicano/metabolismo , Plâncton/fisiologia , Pseudomonas aeruginosa/fisiologia , Biofilmes/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/metabolismo , Glicômica , Humanos , Espectrometria de Massas , Peptidoglicano/química , Plâncton/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/químicaRESUMO
Motility in archaea is facilitated by a unique structure termed the archaellum. N-Glycosylation of the major structural proteins (archaellins) is important for their subsequent incorporation into the archaellum filament. The identity of some of these N-glycans has been determined, but archaea exhibit extensive variation in their glycans, meaning that further investigations can shed light not only on the specific details of archaellin structure and function, but also on archaeal glycobiology in general. Here we describe the structural characterization of the N-linked glycan modifications on the archaellins and S-layer protein of Methanothermococcus thermolithotrophicus, a methanogen that grows optimally at 65 °C. SDS-PAGE and MS analysis revealed that the sheared archaella are composed principally of two of the four predicted archaellins, FlaB1 and FlaB3, which are modified with a branched, heptameric glycan at all N-linked sequons except for the site closest to the N termini of both proteins. NMR analysis of the purified glycan determined the structure to be α-d-glycero-d-manno-Hep3OMe6OMe-(1-3)-[α-GalNAcA3OMe-(1-2)-]-ß-Man-(1-4)-[ß-GalA3OMe4OAc6CMe-(1-4)-α-GalA-(1-2)-]-α-GalAN-(1-3)-ß-GalNAc-Asn. A detailed investigation by hydrophilic interaction liquid ion chromatography-MS discovered the presence of several, less abundant glycan variants, related to but distinct from the main heptameric glycan. In addition, we confirmed that the S-layer protein is modified with the same heptameric glycan, suggesting a common N-glycosylation pathway. The M. thermolithotrophicus archaellin N-linked glycan is larger and more complex than those previously identified on the archaellins of related mesophilic methanogens, Methanococcus voltae and Methanococcus maripaludis This could indicate that the nature of the glycan modification may have a role to play in maintaining stability at elevated temperatures.
Assuntos
Proteínas Arqueais/química , Methanococcaceae/química , Polissacarídeos/análise , Sequência de Aminoácidos , Sequência de Carboidratos , Glicosilação , Espectrometria de Massas , Ressonância Magnética Nuclear BiomolecularRESUMO
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCEP. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Variação Genética , Antígenos O/biossíntese , Antígenos O/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Técnicas de Inativação de Genes , Transferência Genética Horizontal , Genes Bacterianos/genética , Lipopolissacarídeos/metabolismo , Metiltransferases , Filogenia , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/classificação , SorogrupoRESUMO
In Escherichia coli, the N-terminal domain of the essential protein FtsK (FtsKN) is proposed to modulate septum formation through the formation of dynamic and essential protein interactions with both the Z-ring and late-stage division machinery. Using genomic mutagenesis, complementation analysis, and in vitro pull-down assays, we aimed to identify protein interaction partners of FtsK essential to its function during division. Here, we identified the cytoplasmic Z-ring membrane anchoring protein FtsA as a direct protein-protein interaction partner of FtsK. Random genomic mutagenesis of an ftsK temperature-sensitive strain of E. coli revealed an FtsA point mutation (G50E) that is able to fully restore normal cell growth and morphology, and further targeted site-directed mutagenesis of FtsA revealed several other point mutations capable of fully suppressing the essential requirement for functional FtsK. Together, this provides insight into a potential novel co-complex formed between these components during division and suggests FtsA may directly impact FtsK function.
Assuntos
Divisão Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Mutagênese , Mutação de Sentido Incorreto , Ligação ProteicaRESUMO
The outer leaflet of the outer membrane of nearly all Gram-negative bacteria contains lipopolysaccharide (LPS). The distal end of LPS may be capped with O antigen, a long polysaccharide that can range from a few to hundreds of sugars in length. The chain length of the polysaccharide has many implications for bacterial survival and consequently is tightly controlled. In the Wzx/Wzy-dependent route of O antigen synthesis, one or more Wzz proteins determine the chain length via an unknown mechanism. To gain insight into this mechanism, we identified and characterized important regions of two Wzz proteins in Pseudomonas aeruginosa serotype O13, which confer the production of "long" (Wzz1) and "very long" (Wzz2) chain lengths, respectively. We found that compared to Wzz1, Wzz2 has distinct amino acid insertions in the central α-helices (insα6 and insα7) and in membrane-distal (insL4) and -proximal (insIL) loops. When these regions were deleted in Wzz2, the mutant proteins conferred drastically shortened chain lengths. Within these regions we identified several conserved amino acid residues that were then targeted for site-directed mutagenesis. Our results implicate an RTE motif in loop 4 and a "hot spot" of charged and polar residues in insα7 in the function of Wzz2 We present evidence that the functionally important residues of insα7 are likely involved in stabilizing Wzz through coiled-coil interactions.IMPORTANCE O antigen is an important virulence factor presented on the cell surface of Gram-negative bacteria that is critical for bacterial physiology and pathogenesis. However, some aspects of O antigen biosynthesis, such as the mechanisms for determining polysaccharide chain length, are poorly understood. In this study, we identified unique regions in the O antigen chain length regulators (termed Wzz) of the problematic opportunistic pathogen Pseudomonas aeruginosa We show that these regions are critical for determining O antigen chain length, which provides new insight into the model of the Wzz mechanism. Ultimately, our work adds knowledge toward understanding an important step in the biosynthesis of this virulence factor, which is applicable to a wide range of Gram-negative pathogens.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Antígenos O/química , Pseudomonas aeruginosa/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Antígenos O/metabolismo , Conformação Proteica em alfa-Hélice , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alinhamento de SequênciaRESUMO
A singular feature of all prokaryotic cells is the presence of a cell envelope composed of a cytoplasmic membrane and a cell wall. The introduction of bacterial cell fractionation techniques in the 1950s and 1960s along with developments in procedures for electron microscopy opened the window towards an understanding of the chemical composition and architecture of the cell envelope. This review traces the contribution of Terry Beveridge in these endeavours, beginning with his doctoral studies in the 1970s on the structure of paracrystalline surface arrays (S-layers), followed by an exploration of cryogenic methods for preserving bacteria for ultrastructural analyses. His insights are reflected in a current example of the contribution of cryo-electron microscopy to S-layer studies - the structure and assembly of the surface array of Caulobacter crescentus. The review then focuses on Terry's contributions to imaging the ultrastructure of bacterial cell envelopes and to the development of cryo-electron microscopy techniques, including the use of CEMOVIS (Cryo-electron Microscopy of Vitreous Sections) to "see" the ultrastructure of the Gram-positive cell envelope - his last scientific endeavour.
Assuntos
Bactérias/ultraestrutura , Membrana Celular/ultraestrutura , Parede Celular/ultraestrutura , Microscopia CrioeletrônicaRESUMO
The archaellum is the swimming organelle of the third domain, the Archaea. In the euryarchaeon Methanococcus maripaludis, genes involved in archaella formation, including the three archaellins flaB1, flaB2 and flaB3, are mainly located in the fla operon. Previous studies have shown that transcription of fla genes and expression of Fla proteins are regulated under different growth conditions. In this study, we identify MMP1718 as the first transcriptional activator that directly regulates the fla operon in M. maripaludis. Mutants carrying an in-frame deletion in mmp1718 did not express FlaB2 detected by western blotting. Quantitative reverse transcription PCR analysis of purified RNA from the Δmmp1718 mutant showed that transcription of flaB2 was negligible compared to wildtype cells. In addition, no archaella were observed on the cell surface of the Δmmp1718 mutant. FlaB2 expression and archaellation were restored when the Δmmp1718 mutant was complemented with mmp1718 in trans. Electrophoretic motility shift assay and isothermal titration calorimetry results demonstrated the specific binding of purified MMP1718 to DNA fragments upstream of the fla promoter. Four 6 bp consensus sequences were found immediately upstream of the fla promoter and are considered the putative MMP1718-binding sites. Herein, we designate MMP1718 as EarA, the first euryarchaeal archaellum regulator.
Assuntos
Mathanococcus/genética , Óperon , Ativação Transcricional , Proteínas Arqueais/biossíntese , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Flagelina/metabolismo , Glicosilação , Metaloproteases/metabolismo , Mathanococcus/metabolismo , Regiões Promotoras GenéticasRESUMO
Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosain vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Tobramicina/farmacologia , Biofilmes/crescimento & desenvolvimento , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade MicrobianaRESUMO
Archaella are the swimming organelles in the Archaea. Recently, the first archaellum regulator in the Euryarchaeota, EarAMma, was identified in Methanococcus maripaludis, one of the model organisms used for archaellum studies. EarAMma binds to 6 bp consensus sequences upstream of the fla promoter to activate the transcription of the fla operon, which encodes most of the proteins required for archaella synthesis. In this study, synteny analysis showed that earA homologues are widely distributed in the phylum of Euryarchaeota, with the notable exception of extreme halophiles. We classified Euryarchaeota species containing earA homologues into five classes based on the genomic location of the earA genes relative to fla and chemotaxis operons. EarA homologues from Methanococcus vannielii, Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii successfully complemented the function of EarAMma in a ΔearAMma mutant, demonstrated by the restoration of FlaB2 expression in Western blot analysis and the appearance of archaella on the cell surface in complemented cells. Furthermore, the 6 bp consensus sequence was also found in the fla promoter region in these methanogens, indicating that the EarA homologues ly use a similar mechanism to activate transcription of the fla operons in their own hosts. Attempts to demonstrate complementation of the function of EarAMma in a ΔearAMma mutant by the EarA homologue of Pyrococcus furiosus were unsuccessful, despite the presence of a copy of the 6 bp consensus EarA-binding sequence upstream of the fla promoter in the P. furiosus genome.
Assuntos
Lesão Pulmonar , Infecções por Pseudomonas , Endotélio , Humanos , Pulmão , Pseudomonas aeruginosaRESUMO
UNLABELLED: Bacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associated proteins (Zap) for stability throughout the process of division. In Escherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure of Escherichia coli ZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by ß-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Using in vitro FtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments. IMPORTANCE: Z-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins in E. coli that associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure of E. coli ZapD and identify residues that are critical for FtsZ bundling. Together, these results advance our understanding about the formation and dynamics of the Z-ring prior to bacterial cell division.