Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res ; 1351: 74-96, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20599828

RESUMO

In the brain, estrogen receptor beta (ERbeta) plays important roles in autonomic functions, stress reactivity and learning and memory processes. However, understanding the function of ERbeta has been restricted by the limited availability of specific antisera, by difficulties discriminating the discrete localization of ERbeta-immunoreactivity (ir) at the light microscopic level in many brain regions and the identification of ERbeta-containing neurons in neurophysiological and molecular studies. Here, we demonstrate that a Esr2 bacterial artificial chromosome (BAC) transgenic mouse line that expresses ERbeta identified by enhanced green fluorescent protein (EGFP) overcomes these shortcomings. Throughout the brain, ERbeta-EGFP was detected in the nuclei and cytoplasm of cells, the majority of which resembled neurons. EGFP often extended into dendritic processes and could be identified either natively or following intensification of EGFP using immunolabeling. The distribution of ERbeta-EGFP cells in brain closely corresponded to that reported for ERbeta protein and mRNA. In particular, ERbeta-EGFP cells were found in autonomic brain regions (i.e., hypothalamic paraventricular nucleus, rostral ventrolateral medulla and nucleus of the solitary tract), in regions associated with anxiety and stress behaviors (i.e., bed nucleus of the stria terminalis, amygdala, periaqueductal gray, raphe and parabrachial nuclei) and in regions involved in learning and memory processes (i.e., basal forebrain, cerebral cortex and hippocampus). Additionally, dual label light and electron microscopic studies in select brain areas demonstrate that cell containing ERbeta-EGFP colocalize with both nuclear and extranuclear ERbeta-immunoreactivity. These findings support the utility of Esr2 BAC transgenic reporter mice for future studies understanding the role of ERbeta in CNS function.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Receptor beta de Estrogênio/biossíntese , Animais , Células COS , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Receptor beta de Estrogênio/genética , Feminino , Genes Reporter/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Sprague-Dawley
2.
J Comp Neurol ; 517(1): 69-86, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19711410

RESUMO

The retrotrapezoid nucleus (RTN) contains noncholinergic noncatecholaminergic glutamatergic neurons that express the transcription factor Phox2b (chemically coded or "cc" RTN neurons). These cells regulate breathing and may be central chemoreceptors. Here we explore their ultrastructure and their acid sensitivity by using two novel BAC eGFP-Phox2b transgenic mice (B/G, GENSAT JX99) in which, respectively, 36% and 100% of the cc RTN neurons express the transgene in complete or partial anatomical isolation from other populations of eGFP neurons. All but one of the eGFP-labeled RTN neurons recorded in these mice were acid activated in slices. These cells contained VGLUT2 mRNA, and 50% contained preprogalanin mRNA (determined by single-cell PCR in the B/G mouse). Two neuronal subgroups were revealed, which differed in discharge rate at pH 7.3 (type I approximately 2; type II approximately 4 Hz) and the degree of alkalization that silenced the cells (type I 7.4-7.6, type II 7.8-8.0). Medial to the RTN, C1 neurons recorded in a tyrosine hydroxylase-GFP mouse were pH insensitive between pH 6.9 and pH 7.5. Ultrastructural studies demonstrated that eGFP-labeled RTN neurons were surrounded by numerous capillaries and were often in direct contact with glial cells, pericytes, and the basement membrane of capillaries. Terminals contacting large proximal eGFP dendrites formed mainly symmetric, likely inhibitory, synapses. Terminals on more distal eGFP dendrites formed preferentially asymmetric, presumably excitatory, synapses. In sum, C1 cells are pH insensitive, whereas cc RTN neurons are uniformly acid sensitive. The RTN neurons receive inhibitory and excitatory synaptic inputs and may have unfettered biochemical interactions with glial cells and the local microvasculature.


Assuntos
Proteínas de Homeodomínio/metabolismo , Bulbo/fisiologia , Bulbo/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Fatores de Transcrição/metabolismo , Potenciais de Ação/fisiologia , Animais , Membrana Basal/fisiologia , Membrana Basal/ultraestrutura , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/fisiologia , Tronco Encefálico/ultraestrutura , Cromossomos Artificiais Bacterianos , Dendritos/fisiologia , Dendritos/ultraestrutura , Galanina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Bulbo/irrigação sanguínea , Camundongos , Camundongos Transgênicos , Neuroglia/ultraestrutura , Pericitos/ultraestrutura , RNA Mensageiro/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa