Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777219

RESUMO

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Assuntos
Encéfalo , Cognição , Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Cognição/fisiologia , Pessoa de Meia-Idade , Encéfalo/fisiologia , Idoso , Adulto Jovem , Individualidade , Adolescente , Fatores Etários , Envelhecimento/fisiologia
2.
Alzheimers Dement ; 17(9): 1528-1553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860614

RESUMO

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.


Assuntos
Doença de Alzheimer/fisiopatologia , Ensaios Clínicos como Assunto , Eletroencefalografia/normas , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Humanos
3.
Alzheimers Dement ; 15(2): 292-312, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30555031

RESUMO

Alzheimer's disease and related dementias (ADRDs) are a global crisis facing the aging population and society as a whole. With the numbers of people with ADRDs predicted to rise dramatically across the world, the scientific community can no longer neglect the need for research focusing on ADRDs among underrepresented ethnoracial diverse groups. The Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment (ISTAART; alz.org/ISTAART) comprises a number of professional interest areas (PIAs), each focusing on a major scientific area associated with ADRDs. We leverage the expertise of the existing international cadre of ISTAART scientists and experts to synthesize a cross-PIA white paper that provides both a concise "state-of-the-science" report of ethnoracial factors across PIA foci and updated recommendations to address immediate needs to advance ADRD science across ethnoracial populations.


Assuntos
Doença de Alzheimer/etnologia , Doença de Alzheimer/epidemiologia , Etnicidade , Disparidades em Assistência à Saúde , Grupos Raciais , Idoso , Biomarcadores , Pesquisa Biomédica , Humanos
4.
Nat Med ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187698

RESUMO

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.

5.
Res Sq ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978575

RESUMO

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

6.
Neurobiol Aging ; 85: 58-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739167

RESUMO

Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer's disease (AD), despite a surge in recent validated evidence. This position paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity, reflecting thalamocortical and corticocortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Eletrofisiologia/métodos , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Descoberta de Drogas , Eletroencefalografia , Potenciais Evocados , Humanos , Magnetoencefalografia
8.
PLoS One ; 12(9): e0184037, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863146

RESUMO

OBJECTIVE: Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. METHOD: 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. RESULTS: Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. CONCLUSION: The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia , Giro do Cíngulo/fisiologia , Memória/fisiologia , Adolescente , Adulto , Algoritmos , Comportamento , Tomada de Decisões , Potenciais Evocados , Feminino , Humanos , Masculino , Memória Episódica , Distribuição Normal , Análise de Componente Principal , Tempo de Reação , Fatores de Tempo , Adulto Jovem
9.
Neuropsychologia ; 91: 173-185, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27520471

RESUMO

The present study examined whether Event-Related Potential (ERP) components and their neural generators are common to perceptual and conceptual prospective memory (PM) tasks or specific to the form of PM cue involved. We used Independent Component Analysis (ICA) to study the contributions of brain source activities to scalp ERPs across the different phases of two event-based PM-tasks: (1) holding intentions during a delay (monitoring) (2) detecting the correct context to perform the delayed intention (cue detection) and (3) carrying out the action (realisation of delayed intentions). Results showed that monitoring for both perceptual and conceptual PM-tasks was characterised by an enhanced early occipital negativity (N200). In addition the conceptual PM-task showed a long-lasting effect of monitoring significant around 700ms. Perceptual PM-task cues elicited an N300 enhancement associated with cue detection, whereas a midline N400-like response was evoked by conceptual PM-task cues. The Prospective Positivity associated with realisation of delayed intentions was observed in both conceptual and perceptual tasks. A common frontal-midline brain source contributed to the Prospective Positivity in both tasks and a strong contribution from parieto-frontal brain sources was observed only for the perceptually cued PM-task. These findings support the idea that: (1) The enhanced N200 can be understood as a neural correlate of a 'retrieval mode' for perceptual and conceptual PM-tasks, and additional strategic monitoring is implemented according the nature of the PM task; (2) ERPs associated with cue detection are specific to the nature of the PM cues; (3) Prospective Positivity reflects a general PM process, but the specific brain sources contributing to it depend upon the nature of the PM task.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Memória/fisiologia , Análise de Variância , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Processamento de Sinais Assistido por Computador , Adulto Jovem
10.
Stand Genomic Sci ; 5(2): 211-23, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22180824

RESUMO

We present MINEMO (Minimal Information for Neural ElectroMagnetic Ontologies), a checklist for the description of event-related potentials (ERP) studies. MINEMO extends MINI (Minimal Information for Neuroscience Investigations)to the ERP domain. Checklist terms are explicated in NEMO, a formal ontology that is designed to support ERP data sharing and integration. MINEMO is also linked to an ERP database and web application (the NEMO portal). Users upload their data and enter MINEMO information through the portal. The database then stores these entries in RDF (Resource Description Framework), along with summary metrics, i.e., spatial and temporal metadata. Together these spatial, temporal, and functional metadata provide a complete description of ERP data and the context in which these data were acquired. The RDF files then serve as inputs to ontology-based labeling and meta-analysis. Our ultimate goal is to represent ERPs using a rich semantic structure, so results can be queried at multiple levels, to stimulate novel hypotheses and to promote a high-level, integrative account of ERP results across diverse study methods and paradigms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa