Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Mol Biol ; 111(6): 523-539, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973492

RESUMO

Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Oryza/genética , Giberelinas/metabolismo , Sementes/genética , Glicina/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445999

RESUMO

Clade A protein phosphatase 2Cs (PP2CAs) negatively regulate abscisic acid (ABA) signaling. Here, we investigated the functions of OsPP2CAs and their crosstalk with ABA and gibberellic acid (GA) signaling pathways in rice (Oryza sativa). Among the nine OsPP2CAs, OsPP2C08 had the highest amino acid sequence similarity with OsPP2C51, which positively regulates GA signaling in rice seed germination. However, OsPP2C08 was expressed in different tissues (internodes, sheaths, and flowers) compared to OsPP2C51, which was specifically expressed in seeds, and showed much stronger induction under abiotic stress than OsPP2C51. Transgenic rice lines overexpressing OsPP2C08 (OsPP2C08-OX) had a typical ABA-insensitive phenotype in a post-germination assay, indicating that OsPP2C08, as with other OsPP2CAs, negatively regulates ABA signaling. Furthermore, OsPP2C08-OX lines had longer stems than wild-type (WT) plants due to longer internodes, especially between the second and third nodes. Internode cells were also longer in OsPP2C08-OX lines than in the WT. As GA positively regulates plant growth, these results suggest that OsPP2C08 might positively regulate GA biosynthesis. Indeed, the expression levels of GA biosynthetic genes including gibberellin 20-oxidase (OsGA20ox4) and Ent-kaurenoic acid oxidase (OsKAO) were increased in OsPP2C08-OX lines, and we observed that GIBBERELLIN 2-OXIDASE 4 (OsGA2ox4), encoding an oxidase that catalyzes the 2-beta-hydroxylation of several biologically active GAs, was repressed in the OsPP2C08-OX lines based on a transcriptome deep sequencing and RT-qPCR analysis. Furthermore, we compared the accumulation of SLENDER RICE 1 (SLR1), a DELLA protein involved in GA signaling, in OsPP2C08-OX and WT plants, and observed lower levels of SLR1 in the OsPP2C08-OX lines than in the WT. Taken together, our results reveal that OsPP2C08 negatively regulates ABA signaling and positively regulates GA signaling in rice. Our study provides valuable insight into the molecular mechanisms underlying the crosstalk between GA and ABA signaling in rice.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Germinação/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Sementes/metabolismo
3.
Int J Mol Sci ; 22(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401385

RESUMO

Clade A Type 2C protein phosphatases (PP2CAs) negatively regulate abscisic acid (ABA) signaling and have diverse functions in plant development and in response to various stresses. In this study, we showed that overexpression of the rice ABA receptor OsPYL/RCAR3 reduces the growth retardation observed in plants exposed to osmotic stress. By contrast, overexpression of the OsPYL/RCAR3-interacting protein OsPP2C09 rendered plant growth more sensitive to osmotic stress. We tested whether OsPP2CAs activate an ABA-independent signaling cascade by transfecting rice protoplasts with luciferase reporters containing the drought-responsive element (DRE) or ABA-responsive element (ABRE). We observed that OsPP2CAs activated gene expression via the cis-acting drought-responsive element. In agreement with this observation, transcriptome analysis of plants overexpressing OsPP2C09 indicated that OsPP2C09 induces the expression of genes whose promoters contain DREs. Further analysis showed that OsPP2C09 interacts with DRE-binding (DREB) transcription factors and activates reporters containing DRE. We conclude that, through activating DRE-containing promoters, OsPP2C09 positively regulates the drought response regulon and activates an ABA-independent signaling pathway.


Assuntos
Oryza/enzimologia , Proteína Fosfatase 2C/metabolismo , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Pressão Osmótica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteína Fosfatase 2C/fisiologia
4.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807467

RESUMO

The major components of the cytokinin (CK) signaling pathway have been identified from the receptors to their downstream transcription factors. However, since signaling proteins are encoded by multigene families, characterizing and quantifying the contribution of each component or their combinations to the signaling cascade have been challenging. Here, we describe a transient gene expression system in rice (Oryza sativa) protoplasts suitable to reconstitute CK signaling branches using the CK reporter construct TCSn:fLUC, consisting of a synthetic CK-responsive promoter and the firefly luciferase gene, as a sensitive readout of signaling output. We used this system to systematically test the contributions of CK signaling components, either alone or in various combinations, with or without CK treatment. The type-B response regulators (RRs) OsRR16, OsRR17, OsRR18, and OsRR19 all activated TCSn:fLUC strongly, with OsRR18 and OsRR19 showing the strongest induction by CK. Cotransfecting the reporter with OsHP01, OsHP02, OsHP05, or OsHK03 alone resulted in much weaker effects relative to those of the type-B OsRRs. When we tested combinations of OsHK03, OsHPs, and OsRRs, each combination exhibited distinct CK signaling activities. This system thus allows the rapid and high-throughput exploration of CK signaling in rice.


Assuntos
Citocininas/metabolismo , Oryza/genética , Protoplastos/metabolismo , Citocininas/imunologia , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oryza/imunologia , Oryza/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Regiões Promotoras Genéticas/genética , Protoplastos/imunologia , Transdução de Sinais/imunologia
5.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360554

RESUMO

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
6.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281241

RESUMO

The AP2/EREBP family transcription factors play important roles in a wide range of stress tolerance and hormone signaling. In this study, a heat-inducible rice ERF gene was isolated and functionally characterized. The OsERF115/AP2EREBP110 was categorized to Group-IIIc of the rice AP2/EREBP family and strongly induced by heat and drought treatment. The OsERF115/AP2EREBP110 protein targeted to nuclei and suppressed the ABA-induced transcriptional activation of Rab16A promoter in rice protoplasts. Overexpression of OsERF115/AP2EREBP110 enhanced thermotolerance of seeds and vegetative growth stage plants. The OsERF115/AP2EREBP110 overexpressing (OE) plants exhibited higher proline level and increased expression of a proline biosynthesis P5CS1 gene. Phenotyping of water use dynamics of the individual plant indicates that the OsERF115/AP2EREBP110-OE plant exhibited better water saving traits under heat and drought combined stress. Our combined results suggest the potential use of OsERF115/AP2EREBP110 as a candidate gene for genetic engineering approaches to develop heat and drought stress-tolerant crops.


Assuntos
Oryza/metabolismo , Termotolerância/fisiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Secas , Proteínas de Choque Térmico/metabolismo , Oryza/genética , Osmorregulação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Água/fisiologia
7.
Plant Physiol ; 179(4): 1810-1821, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692220

RESUMO

DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Desmetilação do DNA , Proteínas Nucleares/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Metilação de DNA , Epigenômica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/genética , Nicotinamidase/genética , Nicotinamidase/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
8.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545174

RESUMO

Overexpression of abscisic acid (ABA) receptors has been reported to enhance drought tolerance, but also to cause stunted growth and decreased crop yield. Here, we constructed transgenic rice for all monomeric ABA receptors and observed that only transgenic rice over-expressing OsPYL/RCAR7 showed similar phenotype with wild type, without total yield loss when grown under normal growth condition in a paddy field. Even though transgenic rice over-expressing OsPYL/RCAR7 showed neither an ABA-sensitivity nor an osmotic stress tolerance in plate assay, it showed drought tolerance. We investigated the ABA-dependent interaction with OsPP2CAs and ABA signaling induction by OsPYL/RCAR7. In yeast two hybrid assay, OsPYL/RCAR7 required critically higher ABA concentrations to interact with OsPP2CAs than other ABA receptors, and co-immunoprecipitation assay showed strong interaction under ABA treatment. When ABA-responsive signaling activity was monitored using a transient expression system in rice protoplasts, OsPYL/RCAR7 had the lowest ABA-responsive signaling activity as compared with other ABA receptors. OsPYL/RCAR7 also showed weak suppression of phosphatase activity as compared with other ABA receptors in vitro. Transcriptome analysis of transgenic rice over-expressing OsPYL/RCAR7 suggested that only a few genes were induced similar to control under without exogenous ABA, but a large number of genes was induced under ABA treatment compared with control. We conclude that OsPYL/RCAR7 is a novel functional ABA receptor that has low ABA signaling activity and exhibits high ABA dependence. These results lay the foundation for a new strategy to improve drought stress tolerance without compromising crop growth.


Assuntos
Ácido Abscísico/metabolismo , Secas , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Pressão Osmótica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Protoplastos/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
9.
Plant Mol Biol ; 100(3): 319-333, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30941543

RESUMO

KEY MESSAGE: We determined the structure of OsPYL/RCAR3:OsPP2C50 complex with pyrabactin. Our results suggest that a less-conserved phenylalanine of OsPYL/RCAR subfamily I is one of considerations of ABA agonist development for Oryza sativa. Pyrabactin is a synthetic chemical mimicking abscisic acid (ABA), a naturally occurring phytohormone orchestrating abiotic stress responses. ABA and pyrabactin share the same pocket in the ABA receptors but pyrabactin modulates ABA signaling differently, exhibiting both agonistic and antagonistic effects. To explore structural determinants of differential functionality of pyrabactin, we determined the crystal structure of OsPYL/RCAR3:pyrabactin:OsPP2C50, the first rice ABA receptor:co-receptor complex structure with a synthetic ABA mimicry. The water-mediated interaction between the wedging Trp-259 of OsPP2C50 and pyrabactin is lost, undermining the structural integrity of the ABA receptor:co-receptor. The loss of the interaction of the wedging tryptophan of OsPP2C with pyrabactin appears to contribute to the weaker functionality of pyrabactin. Pyrabactin in the OsPYL/RCAR3:OsPP2C50 complex adopts a conformation different from that in ABA receptors from Arabidopsis. Phe125, specific to the subfamily I of OsPYL/RCARs in the ABA binding pocket, appears to be the culprit for the differential conformation of pyrabactin. Although the gate closure essential for the integrity of ABA receptor:co-receptor is preserved in the presence of pyrabactin, Phe125 apparently restricts accessibility of pyrabactin, leading to decreased affinity for OsPYL/RCAR3 evidenced by phosphatase assay. However, Phe125 does not affect conformation and accessibility of ABA. Yeast two-hybrid, germination and gene transcription analyses in rice also support that pyrabactin imposes a weak effect on the control of ABA signaling. Taken together, our results suggest that phenylalanine substitution of OsPYL/RCARs subfamily I may be one of considerations for ABA synthetic agonist development.


Assuntos
Ácido Abscísico/metabolismo , Naftalenos/agonistas , Naftalenos/química , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sulfonamidas/agonistas , Sulfonamidas/química , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X , Germinação , Modelos Moleculares , Fosfoproteínas Fosfatases/química , Reguladores de Crescimento de Plantas/metabolismo , Conformação Proteica , Sementes/metabolismo , Transdução de Sinais , Estresse Fisiológico
10.
Plant Mol Biol ; 96(1-2): 17-34, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086189

RESUMO

KEY MESSAGE: This work suggests 2020 potential candidates in rice for the functional annotation of unannotated genes using meta-analysis of anatomical samples derived from microarray and RNA-seq technologies and this information will be useful to identify novel morphological agronomic traits. Although the genome of rice (Oryza sativa) has been sequenced, 14,365 genes are considered unannotated because they lack putative annotation information. According to the Rice Genome Annotation Project Database ( http://rice.plantbiology.msu.edu/ ), the proportion of functionally characterized unannotated genes (0.35%) is quite limited when compared with the approximately 3.9% of annotated genes with assigned putative functions. Researchers require additional information to help them investigate the molecular mechanisms associated with those unannotated genes. To determine which of them might regulate morphological or physiological traits in the rice genome, we conducted a meta-analysis of expression data that covered a wide range of tissue/organ samples. Overall, 2020 genes showed cultivar-, tissue-, or organ-preferential patterns of expression. Representative candidates from featured groups were validated by RT-PCR, and the GUS reporter system was used to validate the expression of genes that were clustered according to their leaf or root preference. Taking a molecular and genetics approach, we examined meta-expression data and found that 127 genes were differentially expressed between japonica and indica rice cultivars. This is potentially significant for future agronomic applications. We also used a T-DNA insertional mutant and performed a co-expression network analysis of Sword shape dwarf1 (SSD1), a gene that regulates cell division. This network was refined via RT-PCR analysis. Our results suggested that SSD1 represses the expression of four genes related to the processes of DNA replication or cell division and provides insight into possible molecular mechanisms. Together, these strategies present a valuable tool for in-depth characterization of currently unannotated genes.


Assuntos
Anotação de Sequência Molecular/métodos , Oryza/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Curr Genomics ; 19(1): 4-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29491728

RESUMO

The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

12.
Plant Mol Biol ; 93(4-5): 389-401, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000033

RESUMO

Protein phosphatase 2C clade A members are major signaling components in the ABA-dependent signaling cascade that regulates seed germination. To elucidate the role of PP2CA genes in germination of rice seed, we selected OsPP2C51, which shows highly specific expression in the embryo compared with other protein phosphatases based on microarray data. GUS histochemical assay confirmed that OsPP2C51 is expressed in the seed embryo and that this expression pattern is unique compared with those of other OsPP2CA genes. Data obtained from germination assays and alpha-amylase assays of OsPP2C51 knockout and overexpression lines suggest that OsPP2C51 positively regulates seed germination in rice. The expression of alpha-amylase synthesizing genes was high in OsPP2C51 overexpressing plants, suggesting that elevated levels of OsPP2C51 might enhance gene expression related to higher rates of seed germination. Analysis of protein interactions between ABA signaling components showed that OsPP2C51 interacts with OsPYL/RCAR5 in an ABA-dependent manner. Furthermore, interactions were observed between OsPP2C51 and SAPK2, and between OsPP2C51 and OsbZIP10 and we found out that OsPP2C51 can dephosphorylates OsbZIP10. These findings suggest the existence of a new branch in ABA signaling pathway consisting of OsPYL/RCAR-OsPP2C-bZIP apart from the previously reported OsPYL/RCAR-OsPP2C-SAPK-bZIP. Overall, our result suggests that OsPP2C51 is a positive regulator of seed germination by directly suppressing active phosphorylated OsbZIP10.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Germinação/genética , Proteínas de Plantas/genética , Proteína Fosfatase 2C/genética , Sementes/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Imunoprecipitação , Microscopia de Fluorescência , Mutação , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Proteína Fosfatase 2C/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Técnicas do Sistema de Duplo-Híbrido , alfa-Amilases/genética , alfa-Amilases/metabolismo
13.
Plant Physiol ; 169(1): 780-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26198257

RESUMO

The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Osmose/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Manitol/farmacologia , Modelos Biológicos , Mutagênese Insercional/efeitos dos fármacos , Mutação/genética , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
14.
J Exp Bot ; 67(1): 69-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26453745

RESUMO

AtCYP19-4 (also known as CYP5) was previously identified as interacting in vitro with GNOM, a member of a large family of ARF guanine nucleotide exchange factors that is required for proper polar localization of the auxin efflux carrier PIN1. The present study demonstrated that OsCYP19-4, a gene encoding a putative homologue of AtCYP19-4, was up-regulated by several stresses and showed over 10-fold up-regulation in response to cold. The study further demonstrated that the promoter of OsCYP19-4 was activated in response to cold stress. An OsCYP19-4-GFP fusion protein was targeted to the outside of the plasma membrane via the endoplasmic reticulum as determined using brefeldin A, a vesicle trafficking inhibitor. An in vitro assay with a synthetic substrate oligomer confirmed that OsCYP19-4 had peptidyl-prolyl cis-trans isomerase activity, as was previously reported for AtCYP19-4. Rice plants overexpressing OsCYP19-4 showed cold-resistance phenotypes with significantly increased tiller and spike numbers, and consequently enhanced grain weight, compared with wild-type plants. Based on these results, the authors suggest that OsCYP19-4 is required for developmental acclimation to environmental stresses, especially cold. Furthermore, the results point to the potential of manipulating OsCYP19-4 expression to enhance cold tolerance or to increase biomass.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Grão Comestível , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
15.
Plant Mol Biol ; 89(4-5): 421-31, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26394867

RESUMO

Over-expression of group A bZIP transcription factor genes in plants improves abiotic stress tolerance but usually reduces yields. Thus, there have been several efforts to overcome yield penalty in transgenic plants. In this study, we characterized that expression of the hot pepper (Capsicum annuum) gene CaBZ1, which encodes a group S bZIP transcription factor, was induced by salt and osmotic stress as well as abscisic acid (ABA). Transgenic potato (Solanum tuberosum) plants over-expressing CaBZ1 exhibited reduced rates of water loss and faster stomatal closure than non transgenic potato plants under drought and ABA treatment conditions. CaBZ1 over-expression in transgenic potato increased the expression of ABA- and stress-related genes (such as CYP707A1, CBF and NAC-like genes) and improved drought stress tolerance. Interestingly, over-expression of CaBZ1 in potato did not produce undesirable growth phenotypes in major agricultural traits such as plant height, leaf size and tuber formation under normal growth conditions. The transgenic potato plants also had higher tuber yields than non transgenic potato plants under drought stress conditions. Thus, CaBZ1 may be useful for improving drought tolerance in tuber crops. This might be the first report of the production of transgenic potato with improved tuber yields under drought conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Capsicum/genética , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Ácido Abscísico/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Secas , Alimentos Geneticamente Modificados , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Estômatos de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Água/metabolismo
16.
Plant Cell Environ ; 38(10): 2071-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25847193

RESUMO

Cyclophilin 18-2 (CYP18-2) genes, homologues of human peptidyl-prolyl isomerase-like 1 (PPiL1), are conserved across multicellular organisms and Schizosaccharomyces pombe. Although PPiL1 is known to interact with ski-interacting protein (SKIP), a transcriptional co-regulator and spliceosomal component, there have been no functional analyses of PPiL1 homologues in plants. Rice cyclophilin 18-2 (OsCYP18-2) bound directly to amino acids 56-95 of OsSKIP and its binding was independent of cyclosporin A, a cyclophilin-binding drug. Moreover, OsCYP18-2 exhibited PPIase activity regardless of its interaction with OsSKIP. Therefore, the binding site for OsCYP18-2's interaction with SKIP was distinct from the PPIase active site. OsCYP18-2's interaction with SKIP full-length protein enabled OsCYP18-2's translocation from the cytoplasm into the nucleus and AtSKIP interacted in planta with both AtCYP18-2 and OsCYP18-2. Drought and salt stress induced similar expression of OsCYP18-2 and OsSKIP. Overexpression of OsCYP18-2 in transgenic rice and Arabidopsis thaliana plants enhanced drought tolerance and altered expression and pre-mRNA splicing patterns of stress-related genes in Arabidopsis under drought conditions. Furthermore, OsCYP18-2 caused transcriptional activation with/without OsSKIP in the GAL4 system of yeast; thus the OsSKIP-OsCYP18-2 interaction has an important role in the transcriptional and post-transcriptional regulation of stress-related genes and increases tolerance to drought stress.


Assuntos
Arabidopsis/fisiologia , Ciclofilinas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Arabidopsis/genética , Núcleo Celular/metabolismo , Ciclofilinas/genética , Secas , Expressão Gênica , Modelos Biológicos , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tolerância ao Sal , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Ativação Transcricional , Água/fisiologia
17.
Int J Mol Sci ; 16(9): 21959-74, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378525

RESUMO

The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by ¹H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of ¹H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice.


Assuntos
Metaboloma , Metabolômica , Oryza/fisiologia , Raízes de Plantas/fisiologia , Salinidade , Estresse Fisiológico , Biomarcadores , Genótipo , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética , Tolerância ao Sal
18.
Proteomics ; 14(20): 2307-18, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25047395

RESUMO

Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice-C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG-fractionation of total proteins coupled with MS (MALDI-TOF/TOF and nESI-LC-MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS-PAGE in combination with nESI-LC-MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice-C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.


Assuntos
Ascomicetos/fisiologia , Interações Hospedeiro-Patógeno , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteômica/métodos , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Oryza/metabolismo , Proteínas de Plantas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Exp Bot ; 65(2): 453-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24474809

RESUMO

Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of seed dormancy and adaptation to abiotic stresses. Previous work identified OsPYL/RCARs as functional ABA receptors regulating ABA-dependent gene expression in Oryza sativa. OsPYL/RCARs thus are considered to be good candidate genes for improvement of abiotic stress tolerance in crops. This work demonstrates that the cytosolic ABA receptor OsPYL/RCAR5 in O. sativa functions as a positive regulator of abiotic stress-responsive gene expression. The constitutive expression of OsPYL/RCAR5 in rice driven by the Zea mays ubiquitin promoter induced the expression of many stress-responsive genes even under normal growth conditions and resulted in improved drought and salt stress tolerance in rice. However, it slightly reduced plant height under paddy field conditions and severely reduced total seed yield. This suggests that, although exogenous expression of OsPYL/RCAR5 is able to improve abiotic stress tolerance in rice, fine regulation of its expression will be required to avoid deleterious effects on agricultural traits.


Assuntos
Adaptação Fisiológica/genética , Secas , Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Oryza/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
20.
Int J Mol Sci ; 14(3): 5899-919, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23485991

RESUMO

The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa