RESUMO
Fibroblasts, the most abundant structural cells, exert homeostatic functions but also drive disease pathogenesis. Single-cell technologies have illuminated the shared characteristics of pathogenic fibroblasts in multiple diseases including autoimmune arthritis, cancer and inflammatory colitis. However, the molecular mechanisms underlying the disease-associated fibroblast phenotypes remain largely unclear. Here, we identify ETS1 as the key transcription factor governing the pathological tissue-remodeling programs in fibroblasts. In arthritis, ETS1 drives polarization toward tissue-destructive fibroblasts by orchestrating hitherto undescribed regulatory elements of the osteoclast differentiation factor receptor activator of nuclear factor-κB ligand (RANKL) as well as matrix metalloproteinases. Fibroblast-specific ETS1 deletion resulted in ameliorated bone and cartilage damage under arthritic conditions without affecting the inflammation level. Cross-tissue fibroblast single-cell data analyses and genetic loss-of-function experiments lent support to the notion that ETS1 defines the perturbation-specific fibroblasts shared among various disease settings. These findings provide a mechanistic basis for pathogenic fibroblast polarization and have important therapeutic implications.
Assuntos
Artrite Reumatoide , Fibroblastos , Proteína Proto-Oncogênica c-ets-1 , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Ligante RANK/genética , Fatores de Transcrição/metabolismoRESUMO
Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.
Assuntos
Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Células Th2/imunologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Células Th2/metabolismoRESUMO
Follicular helper T (TFH) cells mediate germinal center reactions to generate high affinity antibodies against specific pathogens, and their excessive production is associated with the pathogenesis of systemic autoimmune diseases such as systemic lupus erythematosus (SLE). ETV5, a member of the ETS transcription factor family, promotes TFH cell differentiation in mice. In this study, we examined the role of ETV5 in the pathogenesis of lupus in mice and humans. T cell-specific deletion of Etv5 alleles ameliorated TFH cell differentiation and autoimmune phenotypes in lupus mouse models. Further, we identified SPP1 as an ETV5 target that promotes TFH cell differentiation in both mice and humans. Notably, extracellular osteopontin (OPN) encoded by SPP1 enhances TFH cell differentiation by activating the CD44-AKT signaling pathway. Furthermore, ETV5 and SPP1 levels were increased in CD4+ T cells from patients with SLE and were positively correlated with disease activity. Taken together, our findings demonstrate that ETV5 is a lupus-promoting transcription factor, and secreted OPN promotes TFH cell differentiation.
Assuntos
Diferenciação Celular , Lúpus Eritematoso Sistêmico , Osteopontina , Fatores de Transcrição , Animais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Osteopontina/metabolismo , Osteopontina/genética , Camundongos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Células T Auxiliares Foliculares/imunologia , Células T Auxiliares Foliculares/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos KnockoutRESUMO
BACKGROUND: Data regarding clinical outcomes after intravascular imaging-guided percutaneous coronary intervention (PCI) for complex coronary-artery lesions, as compared with outcomes after angiography-guided PCI, are limited. METHODS: In this prospective, multicenter, open-label trial in South Korea, we randomly assigned patients with complex coronary-artery lesions in a 2:1 ratio to undergo either intravascular imaging-guided PCI or angiography-guided PCI. In the intravascular imaging group, the choice between intravascular ultrasonography and optical coherence tomography was at the operators' discretion. The primary end point was a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization. Safety was also assessed. RESULTS: A total of 1639 patients underwent randomization, with 1092 assigned to undergo intravascular imaging-guided PCI and 547 assigned to undergo angiography-guided PCI. At a median follow-up of 2.1 years (interquartile range, 1.4 to 3.0), a primary end-point event had occurred in 76 patients (cumulative incidence, 7.7%) in the intravascular imaging group and in 60 patients (cumulative incidence, 12.3%) in the angiography group (hazard ratio, 0.64; 95% confidence interval, 0.45 to 0.89; P = 0.008). Death from cardiac causes occurred in 16 patients (cumulative incidence, 1.7%) in the intravascular imaging group and in 17 patients (cumulative incidence, 3.8%) in the angiography group; target-vessel-related myocardial infarction occurred in 38 (cumulative incidence, 3.7%) and 30 (cumulative incidence, 5.6%), respectively; and clinically driven target-vessel revascularization in 32 (cumulative incidence, 3.4%) and 25 (cumulative incidence, 5.5%), respectively. There were no apparent between-group differences in the incidence of procedure-related safety events. CONCLUSIONS: Among patients with complex coronary-artery lesions, intravascular imaging-guided PCI led to a lower risk of a composite of death from cardiac causes, target-vessel-related myocardial infarction, or clinically driven target-vessel revascularization than angiography-guided PCI. (Supported by Abbott Vascular and Boston Scientific; RENOVATE-COMPLEX-PCI ClinicalTrials.gov number, NCT03381872).
Assuntos
Doença da Artéria Coronariana , Stents Farmacológicos , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Angiografia Coronária/efeitos adversos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Doença da Artéria Coronariana/etiologia , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/etiologia , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/métodos , Estudos Prospectivos , Resultado do Tratamento , Ultrassonografia de Intervenção/métodosRESUMO
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Assuntos
Bacillaceae , Bacillus , Culex , Praguicidas , Animais , Bacillaceae/química , Bacillaceae/metabolismo , Controle de Mosquitos , Larva/metabolismoRESUMO
It is poorly known how Aß and tau accumulations associate at the spatiotemporal level in the in vivo human brain to impact cognitive changes in older adults prior to AD symptoms onset. In this study, we used a graph theory-based spatiotemporal analysis to characterize the cortical patterns of Aß and tau deposits and their relationship with cognitive changes in the Harvard Aging Brain Study (HABS) cohort. We found that the temporal accumulations of interlinked Aß and tau pathology display distinctive spatiotemporal correlations associated with early cognitive decline. Notably, we observed that baseline Aß deposits-Thal amyloid phase â ¡-related to future increase of tau deposits, Braak stages â -â £, both displaying linkage to the decline in multi-domain cognitive scores. We also found unimodal tau-to-tau and cognitive impairment associations in broad areas of Braak stages â -â £. The unimodal Aß-to-Aß progressions were not associated with cognitive changes. Our results revealed a multifaceted correlation of the spatiotemporal Aß and tau associations with cognitive decline over time, in which tau-to-tau and tau-Aß interactions, and not Aß independently, might be critical contributors to clinical trajectories toward AD in older adults.
Assuntos
Doença de Alzheimer , Amiloide , Disfunção Cognitiva , Proteínas tau , Idoso , Humanos , Envelhecimento , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides , Cognição , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismoRESUMO
Magnetic resonance-guided focused ultrasound (MRgFUS) capsulotomy is a promising treatment for refractory obsessive-compulsive disorder (OCD); however, long-term clinical outcome studies are lacking. We aimed to investigate the long-term efficacy and safety of MRgFUS capsulotomy in patients with refractory OCD. Ten of the eleven patients who underwent MRgFUS capsulotomy for treatment-resistant OCD between 2013 and 2014 were included in this study. Clinical outcomes were assessed after 10 years of follow-up post-MRgFUS capsulotomy using tools such as neuropsychological test, the Frontal Systems Behavior Scale (FrSBe), and a locally developed MRgFUS-patient-centered outcomes questionnaire. After 10 years of follow-up, there was a mean improvement of 52.3% in the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) score. Seven out of the ten participants responded fully (Y-BOCS reduction ≥35% + CGI-I 1 or 2) to the procedure, two of whom achieved remission (Y-BOCS score ≤12 and CGI-S 1 or 2). Obsessive-compulsive symptoms and overall functioning significantly reduced and improved, respectively (Y-BOCS = 20.7 after 2 years vs. 16.4 after 10 years, p = 0.012; Global Assessment of Functioning = 57.4 after 2 years vs. 69.0 after 10 years, p = 0.011). The patients experienced significantly improved frontal lobe-related functions (FrSBe Sum before 91.0 ± 17.6 vs. after 78.6 ± 17.7, p < 0.05). No adverse effects, including cases of suicide and neurological deficits, were reported. The majority of the respondents were generally satisfied with MRgFUS capsulotomy. MRgFUS capsulotomy is an effective and safe treatment option for the treatment of severe refractory OCD with sustained efficacy even after 10 years.
RESUMO
Cytotoxic T lymphocytes (CTLs) play a crucial role in cancer rejection. However, CTLs encounter dysfunction and exhaustion in the immunosuppressive tumor microenvironment (TME). Although the reactive oxygen species (ROS)-rich TME attenuates CTL function, the underlying molecular mechanism remains poorly understood. The nuclear factor erythroid 2-related 2 (Nrf2) is the ROS-responsible factor implicated in increasing susceptibility to cancer progression. Therefore, we examined how Nrf2 is involved in anti-tumor responses of CD8+ T and chimeric antigen receptor (CAR) T cells in the ROS-rich TME. Here, we demonstrated that tumor growth in Nrf2-/- mice was significantly controlled and was reversed by T cell depletion and further confirmed that Nrf2 deficiency in T cells promotes anti-tumor responses using an adoptive transfer model of antigen-specific CD8+ T cells. Nrf2-deficient CTLs are resistant to ROS, and their effector functions are sustained in the TME. Furthermore, Nrf2 knockdown in human CAR-T cells enhanced the survival and function of intratumoral CAR-T cells in a solid tumor xenograft model and effectively controlled tumor growth. ROS-sensing Nrf2 inhibits the anti-tumor T cell responses, indicating that Nrf2 may be a potential target for T cell immunotherapy strategies against solid tumors.
RESUMO
Somatic stem cells contribute to normal tissue homeostasis, and their epigenomic features play an important role in regulating tissue identities or developing disease states. Enhancers are one of the key players controlling chromatin context-specific gene expression in a spatial and temporal manner while maintaining tissue homeostasis, and their dysregulation leads to tumorigenesis. Here, epigenomic and transcriptomic analyses reveal that forkhead box protein D2 (FOXD2) is a hub for the gene regulatory network exclusive to large intestinal stem cells, and its overexpression plays a significant role in colon cancer regression. FOXD2 is positioned at the closed chromatin and facilitates mixed-lineage leukemia protein-4 (MLL4/KMT2D) binding to deposit H3K4 monomethylation. De novo FOXD2-mediated chromatin interactions rewire the regulation of p53-responsive genes and induction of apoptosis. Taken together, our findings illustrate the novel mechanistic details of FOXD2 in suppressing colorectal cancer growth and suggest its function as a chromatin-tuning factor and a potential therapeutic target for colorectal cancer.
Assuntos
Neoplasias Colorretais , Histonas , Humanos , Cromatina/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Histonas/genética , Histonas/metabolismoRESUMO
The adolescent social experience is essential for the maturation of the prefrontal cortex in mammalian species. However, it still needs to be determined which cortical circuits mature with such experience and how it shapes adult social behaviors in a sex-specific manner. Here, we examined social-approaching behaviors in male and female mice after postweaning social isolation (PWSI), which deprives social experience during adolescence. We found that the PWSI, particularly isolation during late adolescence, caused an abnormal increase in social approaches (hypersociability) only in female mice. We further found that the PWSI female mice showed reduced parvalbumin (PV) expression in the left orbitofrontal cortex (OFCL). When we measured neural activity in the female OFCL, a substantial number of neurons showed higher activity when mice sniffed other mice (social sniffing) than when they sniffed an object (object sniffing). Interestingly, the PWSI significantly reduced both the number of activated neurons and the activity level during social sniffing in female mice. Similarly, the CRISPR/Cas9-mediated knockdown of PV in the OFCL during late adolescence enhanced sociability and reduced the social sniffing-induced activity in adult female mice via decreased excitability of PV+ neurons and reduced synaptic inhibition in the OFCL Moreover, optogenetic activation of excitatory neurons or optogenetic inhibition of PV+ neurons in the OFCL enhanced sociability in female mice. Our data demonstrate that the adolescent social experience is critical for the maturation of PV+ inhibitory circuits in the OFCL; this maturation shapes female social behavior via enhancing social representation in the OFCL SIGNIFICANCE STATEMENT Adolescent social isolation often changes adult social behaviors in mammals. Yet, we do not fully understand the sex-specific effects of social isolation and the brain areas and circuits that mediate such changes. Here, we found that adolescent social isolation causes three abnormal phenotypes in female but not male mice: hypersociability, decreased PV+ neurons in the left orbitofrontal cortex (OFCL), and decreased socially evoked activity in the OFCL Moreover, parvalbumin (PV) deletion in the OFCL in vivo caused the same phenotypes in female mice by increasing excitation compared with inhibition within the OFCL Our data suggest that adolescent social experience is required for PV maturation in the OFCL, which is critical for evoking OFCL activity that shapes social behaviors in female mice.
Assuntos
Neurônios , Parvalbuminas , Masculino , Camundongos , Animais , Feminino , Parvalbuminas/metabolismo , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Social , Isolamento Social , Interneurônios/fisiologia , MamíferosRESUMO
Dual immunoglobulin domain-containing cell adhesion molecule (DICAM) is a type I transmembrane protein that presents in various cells including renal tubular cells. This study evaluated the expression and protective role of DICAM in renal tubular cell injury. HK-2 cells were incubated and treated with lipopolysaccharide (LPS, 30 µg/mL) or hydrogen peroxide (H2O2, 100 µM) for 24 h. To investigate the effect of the gene silencing of DICAM, small interfering RNA of DICAM was used. Additionally, to explain its role in cellular response to injury, DICAM was overexpressed using an adenoviral vector. DICAM protein expression levels significantly increased following treatment with LPS or H2O2 in HK-2 cells. In response to oxidative stress, DICAM showed an earlier increase (2-4 h following treatment) than neutrophil gelatinase-associated lipocalin (NGAL) (24 h following treatment). DICAM gene silencing increased the protein expression of inflammation-related markers, including IL-1ß, TNF-α, NOX4, integrin ß1, and integrin ß3, in H2O2-induced HK-2 cell injury. Likewise, in the LPS-induced HK-2 cell injury, DICAM knockdown led to a decrease in occludin levels and an increase in integrin ß3, IL-1ß, and IL-6 levels. Furthermore, DICAM overexpression followed by LPS-induced HK-2 cell injury resulted in an increase in occludin levels and a decrease in integrin ß1, integrin ß3, TNF-α, IL-1ß, and IL-6 levels, suggesting an alleviating effect on inflammatory responses. DICAM was elevated in the early stage of regular tubular cell injury and may protect against renal tubular injury through its anti-inflammatory properties. DICAM has a potential as an early diagnostic marker and therapeutic target for renal cell injury.
RESUMO
BACKGROUND & AIMS: Recent advances in molecular profiling enable the identification of potential therapeutic targets for biliary tract cancer (BTC). However, in patients with BTC, molecular profiling is hindered by challenges in obtaining adequate tissue samples. Circulating tumor DNA (ctDNA) may offer an alternative to tissue-based analysis. Here we aimed to assess the concordance between ctDNA and tissue genomic profiling in a large cohort of Asian patients with advanced BTC, and to evaluate the feasibility of liquid biopsy in BTC treatment. METHODS: This study included patients with systemic treatment-naive advanced BTC, treated at CHA Bundang Medical Center between January 2019 and December 2022. We enrolled patients with available baseline tissue-based next-generation sequencing (NGS), and sufficient plasma samples for ctDNA analysis (AlphaLiquid®100 from IMBdx). RESULTS: Among 102 enrolled patients, 49.0% had intrahepatic cholangiocarcinoma, 26.5% extrahepatic cholangiocarcinoma, and 24.5% gallbladder cancer. The concordance between intra-patient ctDNA and tumor tissue mutations revealed a sensitivity of 84.8%, and positive predictive value of 79.4%. ctDNA revealed targetable alterations in 34.3% of patients-including FGFR2 fusion, IDH1 mutation, microsatellite instability (MSI)-high, ERBB2 amplification, PIK3CA mutations, BRCA1/2 mutations, and MET amplification. Notably, a novel FGFR2-TNS1 fusion was identified in ctDNA, which was not targeted in the tissue NGS panel. A high maximum somatic variant allele frequency in ctDNA was associated with poor prognosis after gemcitabine/cisplatin-based chemotherapy, in terms of both overall survival (p = 6.9 × 10-6) and progression-free survival (p = 3.8 × 10-7). CONCLUSIONS: Among patients with advanced BTC, ctDNA-based genotyping showed acceptable concordance with tissue genomic profiling. Liquid biopsy using ctDNA could be a valuable complement to tissue-based genomic analysis in BTC. IMPACT AND IMPLICATIONS: Our study is the first large-scale investigation of the clinical utility of liquid biopsy, focusing on ctDNA, as an alternative to conventional tumor tissue analysis, among Asian patients with advanced BTC. The results demonstrated acceptable concordance between analysis of ctDNA versus tissue for identifying therapeutic targets and potentially actionable genetic alterations. This indicates that ctDNA analysis can provide critical insights regarding advanced BTC treatment, particularly in cases where it is challenging to obtain or analyze tumor tissue.
RESUMO
BACKGROUND: Immune checkpoint inhibitors are the standard of care for first-line treatment of patients with metastatic renal cell carcinoma, yet optimised treatment of patients whose disease progresses after these therapies is unknown. The aim of this study was to determine whether adding atezolizumab to cabozantinib delayed disease progression and prolonged survival in patients with disease progression on or after previous immune checkpoint inhibitor treatment. METHODS: CONTACT-03 was a multicentre, randomised, open-label, phase 3 trial, done in 135 study sites in 15 countries in Asia, Europe, North America, and South America. Patients aged 18 years or older with locally advanced or metastatic renal cell carcinoma whose disease had progressed with immune checkpoint inhibitors were randomly assigned (1:1) to receive atezolizumab (1200 mg intravenously every 3 weeks) plus cabozantinib (60 mg orally once daily) or cabozantinib alone. Randomisation was done through an interactive voice-response or web-response system in permuted blocks (block size four) and stratified by International Metastatic Renal Cell Carcinoma Database Consortium risk group, line of previous immune checkpoint inhibitor therapy, and renal cell carcinoma histology. The two primary endpoints were progression-free survival per blinded independent central review and overall survival. The primary endpoints were assessed in the intention-to-treat population and safety was assessed in all patients who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov, NCT04338269, and is closed to further accrual. FINDINGS: From July 28, 2020, to Dec 27, 2021, 692 patients were screened for eligibility, 522 of whom were assigned to receive atezolizumab-cabozantinib (263 patients) or cabozantinib (259 patients). 401 (77%) patients were male and 121 (23%) patients were female. At data cutoff (Jan 3, 2023), median follow-up was 15·2 months (IQR 10·7-19·3). 171 (65%) patients receiving atezolizumab-cabozantinib and 166 (64%) patients receiving cabozantinib had disease progression per central review or died. Median progression-free survival was 10·6 months (95% CI 9·8-12·3) with atezolizumab-cabozantinib and 10·8 months (10·0-12·5) with cabozantinib (hazard ratio [HR] for disease progression or death 1·03 [95% CI 0·83-1·28]; p=0·78). 89 (34%) patients in the atezolizumab-cabozantinib group and 87 (34%) in the cabozantinib group died. Median overall survival was 25·7 months (95% CI 21·5-not evaluable) with atezolizumab-cabozantinib and was not evaluable (21·1-not evaluable) with cabozantinib (HR for death 0·94 [95% CI 0·70-1·27]; p=0·69). Serious adverse events occurred in 126 (48%) of 262 patients treated with atezolizumab-cabozantinib and 84 (33%) of 256 patients treated with cabozantinib; adverse events leading to death occurred in 17 (6%) patients in the atezolizumab-cabozantinib group and nine (4%) in the cabozantinib group. INTERPRETATION: The addition of atezolizumab to cabozantinib did not improve clinical outcomes and led to increased toxicity. These results should discourage sequential use of immune checkpoint inhibitors in patients with renal cell carcinoma outside of clinical trials. FUNDING: F Hoffmann-La Roche and Exelixis.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Masculino , Feminino , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Renais/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Progressão da DoençaRESUMO
BACKGROUND: Hypertension is a leading risk factor for cardiovascular disease among patients living with HIV (PLWH). Understanding the predictors and patterns of antihypertensive medication prescription and blood pressure (BP) control among PLWH with hypertension (HTN) is important to improve the primary prevention efforts for this high-risk population. We sought to assess important patient-level correlates (eg, race) and inter-facility variations in antihypertension medication prescriptions and BP control among Veterans living with HIV (VLWH) and HTN. METHODS: We studied VLWH with a diagnosis of HTN who received care in the Veterans Health Administration (VHA) from January 2018 to December 2019. We evaluated HTN treatment and blood pressure control across demographic variables, including race, and by medical comorbidities. Data were also compared among VHA facilities. Predictors of HTN treatment and control were assessed in 2-level hierarchical multivariate logistic regression models to estimate odds ratios (ORs). The VHA facility random-effects parameters from the hierarchical models were used to calculate the median odds ratios to characterize the variation across the different VHA facilities. RESULTS: A total of 17,468 VLWH with HTN (mean age 61 years, 97% male, 54% Black, 40% White) who received care within the VHA facilities in 2018-2019 were included. 73% were prescribed antihypertension medications with higher prescription rates among Black vs White patients (75% vs 71%) and higher prescription rates among patients with a history of cardiovascular disease, diabetes, and kidney disease (>80%), and those receiving antiretroviral therapy and with controlled HIV viral load (â¼75%). Only 27% of VLWH with HTN had optimal BP control of systolic BP <130 mmHg and diastolic BP <80 mmHg, with a lower rate of control among Black vs White patients (24% v. 31%). In multivariate regression, Black patients had a higher likelihood of HTN medication prescription (OR 1.32, 95% CI: 1.22-1.42) but were less likely to have optimal BP control (OR 0.82; 0.76-0.88). Important positive correlates of antihypertensive prescription and optimal BP control included: number of outpatient visits in prior year, and histories of diabetes, coronary artery disease, and heart failure. There was about 10% variability in both antihypertensive prescription and BP control patterns between VHA facilities for patients with similar characteristics. There was increased inter-facility variation in antihypertensive prescription among those with a history of heart failure and those not receiving antiretroviral therapy. CONCLUSION: In a retrospective analysis of large VHA data, we found that VLWH with HTN have suboptimal antihypertensive medication prescription and BP control. Black VLWH had higher HTN medication prescription rates but lower optimal BP control.
RESUMO
BACKGROUND: Current guidelines recommend complete revascularization (CR) in hemodynamically stable patients with ST-segment elevation myocardial infarction (STEMI) and multivessel coronary artery disease (MVD). With regard to the timing of percutaneous coronary intervention (PCI) for non-infarct-related artery (non-IRA), recent randomized clinical trials have revealed that immediate CR was non-inferior to staged CR. However, the optimal timing of CR remains uncertain. The OPTION-STEMI trial compared immediate CR and in-hospital staged CR guided by fractional flow reserve (FFR) for intermediate stenosis of the non-IRA. METHODS: The OPTION-STEMI is a multicenter, investigator-initiated, prospective, open-label, non-inferiority randomized clinical trial. The study included patients with at least 1 non-IRA lesion with ≥50% stenosis by visual estimation. Patients fulfilling the inclusion criteria were randomized into 2 groups at a 1:1 ratio: immediate CR (i.e., PCI for the non-IRA performed during primary angioplasty) or in-hospital staged CR. In the in-hospital staged CR group, PCI for non-IRA lesions was performed on another day during the index hospitalization. Non-IRA lesions with 50%-69% stenosis by visual estimation were evaluated by FFR, whereas those with ≥70% stenosis was revascularized without FFR. The primary endpoint was the composite of all-cause death, non-fatal myocardial infarction, and all unplanned revascularization at 1 year after randomization. Enrolment began in December 2019 and was completed in January 2024. The follow-up for the primary endpoint will be completed in January 2025, and primary results will be available in the middle of 2025. CONCLUSIONS: The OPTION-STEMI is a multicenter, non-inferiority, randomized trial that evaluated the timing of in-hospital CR with the aid of FFR in patients with STEMI and MVD. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov. Unique identifier: NCT04626882; and URL: https://cris.nih.go.kr. Unique identifier: KCT0004457.
Assuntos
Doença da Artéria Coronariana , Reserva Fracionada de Fluxo Miocárdico , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Angiografia Coronária , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Revascularização Miocárdica/métodos , Intervenção Coronária Percutânea/métodos , Estudos Prospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Fatores de Tempo , Tempo para o TratamentoRESUMO
The Materials Imaging and Dynamics (MID) instrument at the European X-ray Free-Electron Laser Facility (EuXFEL) is equipped with a multipurpose diagnostic end-station (DES) at the end of the instrument. The imager unit in DES is a key tool for aligning the beam to a standard trajectory and for adjusting optical elements such as focusing lenses or the split-and-delay line. Furthermore, the DES features a bent-diamond-crystal spectrometer to disperse the spectrum of the direct beam to a line detector. This enables pulse-resolved characterization of the EuXFEL spectrum to provide X-ray energy calibration, and the spectrometer is particularly useful in commissioning special modes of the accelerator. Together with diamond-based intensity monitors, the imager and spectrometer form the DES unit which also contains a heavy-duty beamstop at the end of the MID instrument. Here, we describe the setup in detail and provide exemplary beam diagnostic results.
RESUMO
X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.
RESUMO
Tumour-derived exosomes (T-EXOs) impede immune checkpoint blockade therapies, motivating pharmacological efforts to inhibit them. Inspired by how antiviral curvature-sensing peptides disrupt membrane-enveloped virus particles in the exosome size range, we devised a broadly useful strategy that repurposes an engineered antiviral peptide to disrupt membrane-enveloped T-EXOs for synergistic cancer immunotherapy. The membrane-targeting peptide inhibits T-EXOs from various cancer types and exhibits pH-enhanced membrane disruption relevant to the tumour microenvironment. The combination of T-EXO-disrupting peptide and programmed cell death protein-1 antibody-based immune checkpoint blockade therapy improves treatment outcomes in tumour-bearing mice. Peptide-mediated disruption of T-EXOs not only reduces levels of circulating exosomal programmed death-ligand 1, but also restores CD8+ T cell effector function, prevents premetastatic niche formation and reshapes the tumour microenvironment in vivo. Our findings demonstrate that peptide-induced T-EXO depletion can enhance cancer immunotherapy and support the potential of peptide engineering for exosome-targeting applications.
Assuntos
Exossomos , Neoplasias , Camundongos , Animais , Exossomos/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia , Neoplasias/terapia , Peptídeos/farmacologia , Peptídeos/metabolismo , Antivirais , Microambiente TumoralRESUMO
PURPOSE: To determine the risk of optic neuritis (ON) during non-pharmaceutical interventions (NPI), vaccination and infection phase of coronavirus disease-19 (COVID-19) in comparison to pre-outbreak levels in pediatric and adult populations in South Korea. DESIGN: A nationwide, population-based, retrospective study. PARTICIPANTS: South Korean individuals with a primary diagnosis of ON between January 2017 and December 2022. METHODS: The Korean Health Insurance Review and Assessment database was queried for new diagnoses of ON between January 2017 and December 2022. Data were divided into 4 periods: pre-COVID-19 (2017-2019), NPI (2020), nationwide vaccination (2021) and nationwide infection (2022). The risk of ON development for each period was calculated and compared to pre-COVID-19 levels with 95% confidence intervals (CI) reported. MAIN OUTCOME MEASURES: Incidence rate ratio (IRR) of ON for each period. RESULTS: A total of 7,216 patients (52.7 % females) were included in the study, with 3,770 patients diagnosed with ON pre-COVID-19 (2017-2019), 1,193 patients during NPI, 1,135 patients during the vaccination and 1,118 patients during the infection phases. The annual incidence of ON during NPI (IRR 0.92 (95% CI 0.85-1.00), P=0.043), vaccination (IRR 0.88 (95% CI 0.81-0.95), P=0.001) and infection (IRR 0.86 (95% CI 0.80-0.93), P<0.001) phases significantly decreased compared to pre-COVID-19 levels when adjusted for age and sex. The proportions of diagnosis with multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM) among patients who developed ON significantly increased in 2021 in comparison to the pre-outbreak levels (9.87% vs. 5.81%; P=0.0002). CONCLUSIONS: The risks of ON development during NPI, vaccination and infection phases of COVID-19 did not increase in comparison to the pre-outbreak levels in general population. However, COVID-19 vaccination may be associated with increased risks of ON associated with diseases such as ADEM, MS and NMOSD.
RESUMO
Functional ligands consist of a wide range of small or large molecules that exhibit a spectrum of physical, chemical, and biological properties. A suite of small molecules (e.g., peptides) or macromolecular ligands (e.g., antibodies and polymers) have been conjugated to particle surfaces for specific applications. However, postfunctionalization of ligands often presents challenges in controlling the surface density and may require the chemical modification of ligands. As an alternative option to postfunctionalization, our work has focused on using functional ligands as building blocks to assemble particles while maintaining their intrinsic (functional) properties. Through self-assembly or template-mediated assembly strategies, we have developed a range of protein-, peptide-, DNA-, polyphenol-, glycogen-, and polymer-based particles. This Account discusses the assembly of such nanoengineered particles, which includes self-assembled nanoparticles, hollow capsules, replica particles, and core-shell particles, according to three categories of functional ligands (i.e., small molecules, polymers, and biomacromolecules) that are used as building blocks for their formation. We discuss a range of covalent and noncovalent interactions among ligand molecules that have been explored to facilitate the assembly of particles. The physicochemical properties of the particles, including size, shape, surface charge, permeability, stability, thickness, stiffness, and stimuli-responsiveness, can be readily controlled by varying the ligand building block or by tuning the assembly method. By selecting specific ligands as building blocks, the bio-nano interactions (i.e., stealth, targeting, and cell trafficking) can also be modulated. For instance, particles composed mainly of low-fouling polymers (i.e., poly(ethylene glycol)) exhibit an extended blood circulation time (half-life > 12 h), while antibody-based nanoparticles demonstrate that a trade-off between stealth and targeting may be required when designing targeting nanoparticle systems. Small molecular ligands, such as polyphenols, have been used as building blocks for particle assembly as they can interact with various biomacromolecules through multiple noncovalent interactions, retain the function of biomacromolecules within the assembly, enable pH-responsive disassembly when coordinating with metal ions, and facilitate endosomal escape of nanoparticles. A perspective is provided on the current challenges associated with the clinical translation of ligand-based nanoparticles. This Account is also expected to serve as a reference to guide the fundamental research and development of functional particle systems assembled from various ligands for diverse applications.