Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 626(8000): 752-758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326617

RESUMO

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

2.
Nature ; 619(7968): 52-56, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407680

RESUMO

The orbital Hall effect1 refers to the generation of electron orbital angular momentum flow transverse to an external electric field. Contrary to the common belief that the orbital angular momentum is quenched in solids, theoretical studies2,3 predict that the orbital Hall effect can be strong and is a fundamental origin of the spin Hall effect4-7 in many transition metals. Despite the growing circumstantial evidence8-11, its direct detection remains elusive. Here we report the magneto-optical observation of the orbital Hall effect in the light metal titanium (Ti). The Kerr rotation by the orbital magnetic moment accumulated at Ti surfaces owing to the orbital Hall current is measured, and the result agrees with theoretical calculations semi-quantitatively and is supported by the orbital torque12 measurement in Ti-based magnetic heterostructures. This result confirms the orbital Hall effect and indicates that the orbital angular momentum is an important dynamic degree of freedom in solids. Moreover, this calls for renewed studies of the orbital effect on other degrees of freedom such as spin2,3,13,14, valley15,16, phonon17-19 and magnon20,21 dynamics.

3.
Phys Rev Lett ; 132(3): 036702, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307068

RESUMO

Altermagnetism is a newly identified fundamental class of magnetism with vanishing net magnetization and time-reversal symmetry broken electronic structure. Probing the unusual electronic structure with nonrelativistic spin splitting would be a direct experimental verification of an altermagnetic phase. By combining high-quality film growth and in situ angle-resolved photoemission spectroscopy, we report the electronic structure of an altermagnetic candidate, α-MnTe. Temperature-dependent study reveals the lifting of Kramers degeneracy accompanied by a magnetic phase transition at T_{N}=267 K with spin splitting of up to 370 meV, providing direct spectroscopic evidence for altermagnetism in MnTe.

4.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38064735

RESUMO

Ferromagnetic insulators (FMIs) are intriguing not only due to their rare nature, but also due to their potential applications in spintronics and various electronic devices. One of its key promising applications is based on an FMI-induced magnetic proximity effect, which can impose an effective time-reversal symmetry breaking on the target ultrathin layer to realize novel emergent phenomena. Here, we conduct systematic studies on thin film LaCoO3, an insulator known to be ferromagnet under tensile strain, with varying thicknesses, to establish it as an FMI platform to be integrated in heterostructures. The optimal thickness of the LaCoO3layer, providing a smooth surface and robust ferromagnetism with large remanence, is determined. A heterostructure consisting of an ultrathin target layer (2 uc SrRuO3), the LaCoO3FMI layer, and the La0.5Sr0.5CoO3conducting layer has been fabricated and the angle-resolved photoemission spectroscopy measurement on the multi-layer system demonstrates a sharp Fermi edge and a well-defined Fermi surface without the charging effect. This demonstrates the feasibility of the proposed heterostructure using LaCoO3thin film as the FMI layer, and further lays a groundwork to investigate the magnetic proximity induced phases in quantum materials.

5.
Proc Natl Acad Sci U S A ; 118(47)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789576

RESUMO

Complex electronic phases in strongly correlated electron systems are manifested by broken symmetries in the low-energy electronic states. Some mysterious phases, however, exhibit intriguing energy gap opening without an apparent signature of symmetry breaking (e.g., high-TC cuprates and heavy fermion superconductors). Here, we report an unconventional gap opening in a heterostructured, iron-based superconductor Sr2VO3FeAs across a phase transition at T 0 ∼150 K. Using angle-resolved photoemission spectroscopy, we identify that a fully isotropic gap opens selectively on one of the Fermi surfaces with finite warping along the interlayer direction. This band selectivity is incompatible with conventional gap opening mechanisms associated with symmetry breaking. These findings, together with the unusual field-dependent magnetoresistance, suggest that the Kondo-type proximity coupling of itinerant Fe electrons to localized V spin plays a role in stabilizing the exotic phase, which may serve as a distinct precursor state for unconventional superconductivity.

6.
Nano Lett ; 23(23): 11219-11225, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019157

RESUMO

Solids undergoing a transition from order to disorder experience a proliferation of topological defects. The melting process generates transient quantum states. However, their dynamic nature with a femtosecond lifetime hinders exploration with atomic precision. Here, we suggest an alternative approach to the dynamic melting process by focusing on the interface created by competing degenerate quantum states. We use a scanning tunneling microscope (STM) to visualize the unidirectional charge density wave (CDW) and its spatial progression ("static melting") across a twin domain boundary (TDB) in the layered material GdTe3. Combining the STM with a spatial lock-in technique, we reveal that the order parameter amplitude attenuates with the formation of dislocations and thus two different unidirectional CDWs coexist near the TDB, reducing the CDW anisotropy. Notably, we discovered a correlation between this anisotropy and the CDW gap. Our study provides valuable insight into the behavior of topological defects and transient quantum states.

7.
Nano Lett ; 23(16): 7273-7278, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552567

RESUMO

Copper-based high-temperature superconductors share a common feature in their crystal structure, which is the presence of a CuO2 plane, where superconductivity takes place. Therefore, important questions arise as to whether superconductivity can exist in a single layer of the CuO2 plane and, if so, how such superconductivity in a single CuO2 plane differs from that in a bulk cuprate system. To answer these questions, studies of the superconductivity in cuprate monolayers are necessary. In this study, we constructed a heterostructure system with a La2-xSrxCuO4 (LSCO) monolayer containing a single CuO2 plane and measured the resulting electronic structures. Monolayer LSCO has metallic and bulk-like electronic structures. The hole doping ratio of the monolayer LSCO is found to depend on the underlying buffer layer due to the interface effect. Our work will provide a platform for research into ideal two-dimensional cuprate systems.

8.
Nat Mater ; 21(10): 1144-1149, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35927432

RESUMO

Van der Waals heterostructures with two-dimensional magnets offer a magnetic junction with an atomically sharp and clean interface. This attribute ensures that the magnetic layers maintain their intrinsic spin-polarized electronic states and spin-flipping scattering processes at a minimum level, a trait that can expand spintronic device functionalities. Here, using a van der Waals assembly of ferromagnetic Fe3GeTe2 with non-magnetic hexagonal boron nitride and WSe2 layers, we demonstrate electrically tunable, highly transparent spin injection and detection across the van der Waals interfaces. By varying an electrical bias, the net spin polarization of the injected carriers can be modulated and reversed in polarity, which leads to sign changes of the tunnelling magnetoresistance. We attribute the spin polarization reversals to sizable contributions from high-energy localized spin states in the metallic ferromagnet, so far inaccessible in conventional magnetic junctions. Such tunability of the spin-valve operations opens a promising route for the electronic control of next-generation low-dimensional spintronic device applications.

9.
Nat Mater ; 21(11): 1269-1274, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175520

RESUMO

Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid that spreads up to ~3 Å in a vacuum on the surface of an electride crystal. Its extremely high electron density and weak hybridization with buried atomic orbitals show the quantum and pure nature of the electrons, which exhibit a polarized liquid phase, as demonstrated by our spin-dependent measurement. Furthermore, upon enhancing the electron correlation strength, the dynamics of the quantum electrons change to that of a non-Fermi liquid along with an anomalous band deformation, suggestive of a transition to a hexatic liquid crystal phase. Our findings develop the frontier of quantum electron systems and serve as a platform for exploring correlated electronic phases in a pure fashion.

10.
Nat Mater ; 20(12): 1643-1649, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608283

RESUMO

Magnetism and spin-orbit coupling are two quintessential ingredients underlying topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by spin-orbit coupling, the nodal structures become a source of Berry curvature, leading to a large anomalous Hall effect. However, two-dimensional systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that two-dimensional spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the anomalous Hall effect. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3, a representative metallic ferromagnet with spin-orbit coupling. We show that the sign-changing anomalous Hall effect upon variation in the film thickness, magnetization and chemical potential can be well explained by theoretical models. Our work may facilitate new switchable devices based on ferromagnetic ultrathin films.

11.
Phys Rev Lett ; 127(27): 277001, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35061420

RESUMO

We performed temperature- and doping-dependent high-resolution Raman spectroscopy experiments on YBa_{2}Cu_{3}O_{7-δ} to study B_{1g} phonons. The temperature dependence of the real part of the phonon self-energy shows a distinct kink at T=T_{B1g} above T_{c} due to softening, in addition to the one due to the onset of the superconductivity. T_{B1g} is clearly different from the pseudogap temperature with a maximum in the underdoped region and resembles charge density wave onset temperature, T_{CDW}. We attribute the B_{1g}-phonon softening to an energy gap on the Fermi surface induced by a charge density wave order, which is consistent with the results of a recent electronic Raman scattering study. Our work demonstrates a way to investigate Fermi surface instabilities above T_{c} via phonon Raman studies.

12.
Phys Rev Lett ; 127(25): 256401, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029413

RESUMO

We performed in situ angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES (SARPES) experiments to investigate the relationship between electronic band structures and ferromagnetism in SrRuO_{3} (SRO) thin films. Our high quality ARPES and SARPES results show clear spin-lifted band structures. The spin polarization is strongly dependent on momentum around the Fermi level, whereas it becomes less dependent at high-binding energies. This experimental observation matches our dynamical mean-field theory results very well. As temperature increases from low to the Curie temperature, spin-splitting gap decreases and band dispersions become incoherent. Based on the ARPES study and theoretical calculation results, we found that SRO possesses spin-dependent electron correlations in which majority and minority spins are localized and itinerant, respectively. Our finding explains how ferromagnetism and electronic structure are connected, which has been under debate for decades in SRO.

13.
BMC Palliat Care ; 20(1): 63, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906659

RESUMO

BACKGROUND: Cancer is a leading cause of death in Korea. To protect the autonomy and dignity of terminally ill patients, the Life-Sustaining Treatment Decision-Making Act (LST-Act) came into full effect in Korea in February 2018. However, it is unclear whether the LST-Act influences decision- making process for life-sustaining treatment (LST) for terminally ill cancer patients. METHODS: This was a retrospective study conducted with a medical record review of cancer patients who died at Ulsan University Hospital between July 2015 and May 2020. Patients were divided into two groups: those who died in the period before the implementation of the LST-Act (from July 2015 to October 2017, Group 1) and after the implementation of the LST-Act (from February 2018 to May 2020, Group 2). We measured the self-determination rate and the timing of documentation of do-not-resuscitate (DNR) or Physician Orders for Life-Sustaining Treatment (POLST) in both groups. RESULTS: A total of 1,834 patients were included in the analysis (Group 1, n = 943; Group 2, n = 891). Documentation of DNR or POLST was completed by patients themselves in 1.5 and 63.5 % of patients in Groups 1 and 2, respectively (p < 0.001). The mean number of days between documentation of POLST or DNR and death was higher in Group 2 than in Group 1 (21.2 days vs. 14.4 days, p = 0.001). The rate of late decision, defined as documentation of DNR or POLST within 7 days prior to death, decreased significantly in Group 2 (56.1 % vs. 47.6 %, p < 0.001). In the multivariable analysis, female patients (odds ratio [OR] 0.71, p = 0.002) and patients with more than 12 years of education (OR 0.70, p = 0.019) were significantly related to a reduced rate of late decision. More than 12 years of education (OR 0.53, p = 0.018) and referral to hospice palliative care (OR 0.40, p < 0.001) were significantly related to self-determination. Enforcement of LST-Act was related to a reduced rate of surrogate decision-making (OR 0.01, p < 0.001) and late decision (OR 0.51, p < 0.001). However, physicians with clinical experience of less than 3 years had a higher rate of surrogate decision-making (OR 5.08, p = 0.030) and late decision (OR 2.47, p = 0.021). CONCLUSIONS: After the implementation of the LST-Act, the rate of self-determination increased and decisions for LST occurred earlier than in the era before the implementation of the LST-Act.


Assuntos
Neoplasias , Assistência Terminal , Diretivas Antecipadas , Feminino , Humanos , Neoplasias/terapia , República da Coreia , Ordens quanto à Conduta (Ética Médica) , Estudos Retrospectivos
14.
J Korean Med Sci ; 35(10): e67, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32174065

RESUMO

BACKGROUND: Usually, high-flow nasal cannula (HFNC) therapy is indicated for de novo acute hypoxemic respiratory failure (AHRF). Although only a few researches have examined the effectiveness of HFNC therapy for respiratory failure with hypercapnia, this therapy is often performed under such conditions for various reasons. We investigated the effectiveness of HFNC therapy for AHRF patients with hypercapnia compared to those without hypercapnia. METHODS: All consecutive patients receiving HFNC therapy between January 2012 and June 2018 at a university hospital were enrolled and classified into nonhypercapnic and hypercapnic groups. We compared the outcomes of both groups and adjusted the outcomes with propensity score matching. RESULTS: A total of 862 patients were enrolled, of which 202 were included in the hypercapnic group. HFNC weaning success rates were higher, and intensive care unit (ICU) and hospital mortality was lower in the hypercapnic group than in the nonhypercapnic group (all P < 0.05). However, no statistical differences in HFNC weaning success (adjusted P = 0.623, matched P = 0.593), ICU mortality (adjusted P = 0.463, matched P = 0.195), and hospital mortality (adjusted P = 0.602, matched P = 0.579) were noted from the propensity-adjusted and propensity-matched analyses. Additionally, in the propensity score-matched subgroup analysis (according to chronic lung diseases and causes of HFNC application), there was also no significant difference in outcomes between the two groups. CONCLUSION: In AHRF with underlying conditions, HFNC therapy might be helpful for patients with hypercapnia. Large prospective and randomized controlled trials are required for firm conclusions.


Assuntos
Ventilação não Invasiva/métodos , Oxigenoterapia/métodos , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia , Cânula , Estudos de Coortes , Mortalidade Hospitalar , Humanos , Hipercapnia , Unidades de Terapia Intensiva , Ventilação não Invasiva/instrumentação , Pontuação de Propensão , Estudos Retrospectivos
15.
Nano Lett ; 19(8): 4890-4896, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268723

RESUMO

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-based superconductor FeTe0.55Se0.45 (FTS) may also be topologically nontrivial. Should the superconducting order be s±, then FTS could be a higher order topological superconductor with helical hinge zero modes (HHZMs). To test the presence of these modes, we have fabricated normal-metal/superconductor junctions on different surfaces via 2D atomic crystal heterostructures. As expected, junctions in contact with the hinge reveal a sharp zero bias anomaly that is absent when tunneling purely into the c-axis. Additionally, the shape and suppression with temperature are consistent with highly coherent modes along the hinge and are incongruous with other origins of zero bias anomalies. Additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus, we provide evidence that FTS is indeed a higher order topological superconductor.

16.
Phys Rev Lett ; 123(10): 106401, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573315

RESUMO

Motivated by the novel insulating state of Sr_{2}IrO_{4} from strong spin-orbit coupling (SOC), we investigate, by means of angle resolved photoemission, the metal-insulator transition (MIT) mechanism in Sr_{2-x}La_{x}RhO_{4} whose mother compound is isovalent and isostructural but has smaller SOC strength compared to Sr_{2}IrO_{4}. Transport and angle resolved photoemission results from single crystalline Sr_{2-x}La_{x}RhO_{4} revealed that the MIT occurs coincidentally with a multi- to single-band transition (Lifshitz transition) at x=0.4. Starting from x=0.4, there is a gradual but anomalous enhancement in the band gap size with additional electron doping, suggesting that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is a new type which has been rarely investigated. These results suggest that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is likely induced by the moderate SOC strength and electron doping effect from the La. Our findings not only elucidate the MIT mechanism in Sr_{2-x}La_{x}RhO_{4}, but may also open new avenues for novel MIT research in moderate SOC regimes.

17.
Phys Rev Lett ; 121(8): 086602, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192574

RESUMO

We show theoretically that both the intrinsic spin Hall effect (SHE) and orbital Hall effect (OHE) can arise in centrosymmetric systems through momentum-space orbital texture, which is ubiquitous even in centrosymmetric systems unlike spin texture. The OHE occurs even without spin-orbit coupling (SOC) and is converted into the SHE through SOC. The resulting spin Hall conductivity is large (comparable to that of Pt) but depends on the SOC strength in a nonmonotonic way. This mechanism is stable against orbital quenching. This work suggests a path for an ongoing search for materials with stronger SHE. It also calls for experimental efforts to probe orbital degrees of freedom in the OHE and SHE. Possible ways for experimental detection are briefly discussed.

18.
Phys Rev Lett ; 121(18): 186401, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444409

RESUMO

We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.

19.
Phys Chem Chem Phys ; 20(35): 23007-23012, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30159559

RESUMO

A reduction in the electronic-dimensionality of materials is one method for achieving improvements in material properties. Here, a reduction in electronic-dimensionality is demonstrated using a simple hydrogen treatment technique. Quantum well states from hydrogen-treated bulk 2H-MoS2 are observed using angle resolved photoemission spectroscopy (ARPES). The electronic states are confined within a few MoS2 layers after the hydrogen treatment. A significant reduction in the band-gap can also be achieved after the hydrogen treatment, and both phenomena can be explained by the formation of sulfur vacancies generated by the chemical reaction between sulfur and hydrogen.

20.
ACS Nano ; 18(10): 7570-7579, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38377437

RESUMO

Organic-inorganic hybrid perovskites (OIHPs) are a promising class of materials that rival conventional semiconductors in various optoelectronic applications. However, unraveling the precise nature of their low-energy electronic structures continues to pose a significant challenge, primarily due to the absence of clear band measurements. Here, we investigate the low-energy electronic structure of CH3NH3PbI3 (MAPI3) using angle-resolved photoelectron spectroscopy combined with ab initio density functional theory. We successfully visualize the electronic structure of MAPI3 near the bulk valence band maximum by using a laboratory photon source (He Iα, 21.2 eV) at low temperature and explore its fundamental properties. The observed valence band exhibits a highly isotropic and parabolic band characterized by small effective masses of 0.20-0.21 me, without notable spectral signatures associated with a large polaron or the Rashba effect, subjects that are intensely debated in the literature. Concurrently, our spin-resolved measurements directly disprove the giant Rashba scenario previously suggested in a similar perovskite compound by establishing an upper limit for the Rashba parameter (αR) of 0.28 eV Å. Our results unveil the unusually complex nature of the low-energy electronic structure of OIHPs, thereby advancing our fundamental understanding of this important class of materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa