Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(4)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36260974

RESUMO

We use CeOx-TiO2hetero-interfaces generated on the surface of CeOx-TiO2hybrid oxide supporting powders to stabilize Au single-atoms (SAs) with excellent low-temperature activity toward CO oxidation. Based on intriguing density functional theory calculation results on the preferential formation of Au-SAs at the CeOx-TiO2interfaces and the high activity of Au-SAs toward the Mars-van Krevelen type CO oxidation, we synthesized a Au/CeOx-TiO2(ACT) catalyst with 0.05 wt.% of Au content. The Au-SAs stabilized at the CeOx-TiO2interfaces by electronic coupling between Au and Ce showed improved low-temperature CO oxidation activity than the conventional Au/TiO2control group catalyst. However, the light-off profile of ACT showed that the early activated Au-SAs are not vigorously participating in CO oxidation. The large portion of the positive effect on the overall catalytic activity from the low activation energy barrier of ACT was retarded by the negative impact from the decreasing active site density at high temperatures. We anticipate that the low-temperature activity and high-temperature stability of Au-SAs that stand against each other can be optimized by controlling the electronic coupling strength between Au-SAs and oxide clusters at the Au-oxide-TiO2interfaces. Our results show that atomic-precision interface modulation could fine-tune the catalytic activity and stability of Au-SAs.

2.
Sensors (Basel) ; 20(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036332

RESUMO

Tin sulfide (SnS) is known for its effective gas-detecting ability at low temperatures. However, the development of a portable and flexible SnS sensor is hindered by its high resistance, low response, and long recovery time. Like other chalcogenides, the electronic and gas-sensing properties of SnS strongly depend on its surface defects. Therefore, understanding the effects of its surface defects on its electronic and gas-sensing properties is a key factor in developing low-temperature SnS gas sensors. Herein, using thin SnS films annealed at different temperatures, we demonstrate that SnS exhibits n-type semiconducting behavior upon the appearance of S vacancies. Furthermore, the presence of S vacancies imparts the n-type SnS sensor with better sensing performance under UV illumination at room temperature (25 °C) than that of a p-type SnS sensor. These results are thoroughly investigated using various experimental analysis techniques and theoretical calculations using density functional theory. In addition, n-type SnS deposited on a polyimide substrate can be used to fabricate high-stability flexible sensors, which can be further developed for real applications.

3.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514350

RESUMO

Nanocomposite structures, where the Fe, Fe2O3, or Ni2O3 nanoparticles with thin carbon layers are distributed among a single-wall carbon nanotube (SWCNT) network, are architectured using the co-arc discharge method. A synergistic effect between the nanoparticles and SWCNT is achieved with the composite structures, leading to the enhanced sensing response in ammonia detection. Thorough studies about the correlation between the electric properties and sensing performance confirm the independent operation of the receptor and transducer in the sensor structure by nanoparticles and SWCNT, respectively. Nanoparticles with a large specific surface area provide adsorption sites for the NH3 gas molecules, whereas hole carriers are supplied by the SWCNT to complete the chemisorption process. A new chemo-resistive sensor concept and its operating mechanism is proposed in our work. Furthermore, the separated receptor and transducer sensor scheme allows us more freedom in the design of sensor materials and structures, thereby enabling the design of high-performance gas sensors.

4.
Nano Lett ; 15(7): 4282-8, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26061698

RESUMO

The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorption spectroscopy and electron microscopy creates a powerful suite of tools that we use to assess the chemical and morphological changes in lithium iron phosphate (LiFePO4) micro- and nanocrystals that occur upon delithiation. All sizes of partly delithiated crystals were found to contain two phases with a complex correlation between crystallographic orientation and phase distribution. However, the lattice mismatch between LiFePO4 and FePO4 led to severe fracturing on microcrystals, whereas no mechanical damage was observed in nanoplates, indicating that mechanics are a principal driver in the outstanding electrode performance of LiFePO4 nanoparticles. These results demonstrate the importance of engineering the active electrode material in next generation electrical energy storage systems, which will achieve theoretical limits of energy density and extended stability. This work establishes soft X-ray ptychographic chemical imaging as an essential tool to build comprehensive relationships between mechanics and chemistry that guide this engineering design.

5.
J Am Chem Soc ; 137(10): 3533-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25714859

RESUMO

Electrochemical oxidation of carbonate esters at the Li(x)Ni(0.5)Mn(1.5)O(4-δ)/electrolyte interface results in Ni/Mn dissolution and surface film formation, which negatively affect the electrochemical performance of Li-ion batteries. Ex situ X-ray absorption (XRF/XANES), Raman, and fluorescence spectroscopy, along with imaging of Li(x)Ni(0.5)Mn(1.5)O(4-δ) positive and graphite negative electrodes from tested Li-ion batteries, reveal the formation of a variety of Mn(II/III) and Ni(II) complexes with ß-diketonate ligands. These metal complexes, which are generated upon anodic oxidation of ethyl and diethyl carbonates at Li(x)Ni(0.5)Mn(1.5)O(4-δ), form a surface film that partially dissolves in the electrolyte. The dissolved Mn(III) complexes are reduced to their Mn(II) analogues, which are incorporated into the solid electrolyte interphase surface layer at the graphite negative electrode. This work elucidates possible reaction pathways and evaluates their implications for Li(+) transport kinetics in Li-ion batteries.

6.
Inorg Chem ; 54(6): 2671-8, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25723381

RESUMO

Four LiMn0.8Fe0.1M0.1PO4/C (M = Fe, Co, Ni, Cu) cathode materials have been synthesized via a freeze-drying method. The samples have been characterized by powder X-ray diffraction, transmission electron microscopy, magnetic susceptibility, and electrochemical measurements. The composition and effective insertion of the transition-metal substituents in LiMnPO4 have been corroborated by elemental analysis, the evolution of the crystallographic parameters, and the magnetic properties. The morphological characterization of the composites has demonstrated that the phosphate nanoparticles are enclosed in a matrix of amorphous carbon. Among them, LiMn0.8Fe0.1Ni0.1PO4/C is the most promising cathode material, providing a good electrochemical performance in all aspects: high voltage and specific capacity values, excellent cyclability, and good rate capability. This result has been attributed to several factors, such as the suitable morphology of the sample, the good connection afforded by the in situ generated carbon, and the amelioration of the structural stress provided by the presence of Ni(2+) and Fe(2+) in the olivine structure.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanoestruturas/química , Nanotecnologia/métodos , Eletroquímica , Eletrodos , Liofilização
7.
Nano Lett ; 13(4): 1800-5, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23477483

RESUMO

Monodisperse Sn spherical nanocrystals of 10.0 ± 0.2 nm were prepared in dispersible colloidal form. They were used as a model platform to study the impact of size on the accommodation of colossal volume changes during electrochemical lithiation using ex situ transmission electron microscopy (TEM). Significant mechanical damage was observed after full lithiation, indicating that even crystals at these very small dimensions are not sufficient to prevent particle pulverization that compromises electrode durability.


Assuntos
Técnicas Eletroquímicas/métodos , Lítio/química , Nanopartículas/química , Estanho/química , Coloides/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Silício/química , Propriedades de Superfície
8.
Adv Sci (Weinh) ; 10(31): e2301993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37750249

RESUMO

Herein, the self-reinforced inductive effect derived from coexistence of both p- and n-type redox-active motifs in a single organic molecule is presented. Molecular orbital energy levels of each motif are dramatically tuned, which leads to the higher oxidation and the lower reduction potentials. The self-reinforced inductive effect of the symmetric bipolar organic molecule, N,N'-dimethylquinacridone (DMQA), is corroborated, by both experimental and theoretical methods. Furthermore, its redox mechanism and reaction pathway in the Li+ -battery system are scrutinized. DMQA shows excellent capacity retention at the operating voltage of 3.85 and 2.09 V (vs Li+ /Li) when used as the cathode and anode, respectively. Successful operation of DMQA electrodes in a symmetric all-organic battery is also demonstrated. The comprehensive insight into the energy storage capability of the symmetric bipolar organic molecule and its self-reinforced inductive effect is provided. Thus, a new class of organic electrode materials for symmetric all-organic batteries as well as conventional rechargeable batteries can be conceived.

9.
RSC Adv ; 12(25): 15652-15657, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35685716

RESUMO

Biomolecule detection based on the localized surface plasmon resonance (LSPR) phenomenon has advantages in label-free detection, good sensitivity, and measurement simplicity and reproducibility. However, in order to ultimately be used for actual diagnosis, the ability to detect trace amounts of biomarkers is necessary, which requires the development of signal enhancement strategies that enable ultrasensitive detection. In this paper, we provide a straightforward and efficient route to boost LSPR sensitivity based on multiple sample washings. We found that repeated washing and drying cycles lead to a shift in the LSPR peak in a concentration-dependent manner, where this process drives the accumulation of a precipitate, formed by an enzyme reaction with target specificity, in the sample's LSPR active plasmonic nano-valley structure. Results show that the washing and drying process leads to a signal enhancement of more 200 times compared to a sensor with only enzyme-based amplification. To maximize this effect, optimization of the plasmonic nanostructure was also carried out to finally achieve atto-molar detection of miRNA with a distinguishable LSPR peak shift.

10.
J Colloid Interface Sci ; 616: 749-758, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247813

RESUMO

Hematite-based photoanode (α-Fe2O3) is considered the promising candidate for photoelectrochemical (PEC) water splitting due to its relatively small optical bandgap. However, severe charge recombination in the bulk and poor surface water oxidation kinetics have limited the PEC performance of Fe2O3 photoelectrodes, which is far below the theoretical value. Herein, a new catalyst, S-doped FeOOH (S-FeOOH), has been immobilized onto the surface of the Fe2O3 nanorod (NR) array by a facile chemical bath deposition incorporated thermal sulfuration process. The grown S-FeOOH layer acts not only as an efficient catalyst layer to accelerate the water oxidation on the surface of photoelectrode but also constructs a heterojunction with the light absorption layer to facilitate the interface charge carrier separation and transfer. As expected, the modified S-FeOOH@Fe2O3 photoanode achieves a remarkable increase in PEC performance of 2.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE) andan apparent negative shifted onset potential of 250 mV in comparison with pristine Fe2O3 (0.95 mA cm-2 at 1.23 VRHE). These results provide a simple and effective strategy to coupling oxygen evolution catalysts with photoanodes for practically high-performance PEC applications.

11.
J Phys Chem Lett ; 13(7): 1719-1725, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35156829

RESUMO

We propose an interface-engineered oxide-supported Pt nanoparticle-based catalyst with improved low-temperature activity toward CO oxidation. By wet-impregnating 1 wt % Ce on TiO2, we synthesized hybrid oxide support of CeOx-TiO2, in which dense CeOx clusters formed on the surface of TiO2. Then, the Pt/CeOx-TiO2 catalyst was synthesized by impregnating 2 wt % Pt on the CeOx-TiO2 supporting oxide. Pt-CeOx-TiO2 triphase interfaces were eventually formed upon impregnation of Pt on CeOx-TiO2. The Pt-CeOx-TiO2 interfaces open up the interface-mediated Mars-van Krevelen CO oxidation pathway, thus providing additional interfacial reaction sites for CO oxidation. Consequently, the specific reaction rate of Pt/CeOx-TiO2 for CO oxidation was increased by 3.2 times compared with that of Pt/TiO2 at 140 °C. Our results demonstrate a widely applicable and straightforward method of catalytic activation of the interfaces between metal nanoparticles and supporting oxides, which enabled fine-tuning of the catalytic performance of oxide-supported metal nanoparticle classes of heterogeneous catalysts.

12.
J Colloid Interface Sci ; 585: 72-84, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33316648

RESUMO

Photoelectrochemical water splitting is an environmentally benign way to store solar energy. Properties such as fast charge recombination and poor charge transport rate severely restrict the use of BiVO4 as a photoanode for photoelectrochemical water splitting and many attempts were made to improve the current performance limit of the photoanode. To address these disadvantages, a highly efficient BiVO4/Bi2S3 heterojunction was fabricated applying facial anion-exchange (AE) and successive ionic layer adsorption and reaction (SILAR). The deposition of Bi2S3 on BiVO4 nanoworms by both AE and SILAR was confirmed through morphological, structural, and optical analyses. The morphological analysis indicated that Bi2S3 grown through SILAR has relatively more crystalline-amorphous phase boundaries than Bi2S3 generated using the anion-exchange method. The highest photocurrent density was observed for the SILAR-coated Bi2S3 on BiVO4, which is three times the value of the pristine BiVO4 measured under 1 sun illumination (100 mW cm-2 with Air mass (AM) 1.5 filter) in a 0.5 M Na2SO4 electrolyte at 1.6 V vs. RHE. In addition, the deposition of Bi2S3 through AE results in a twofold higher photocurrent density compared to uncoated BiVO4. The comparison of the two cost-effective AE and SILAR methods to deposit Bi2S3 on BiVO4 showed a negative shift in the flat band Mott-Schottky values, which coincides with the drifted onset potential values of the current density-voltage (J-V) curve. Furthermore, photoelectrochemical impedance spectroscopy (PEIS) analyses and band alignment studies revealed that SILAR-grown Bi2S3 creates an effective heterojunction with BiVO4, which leads to an efficient charge transfer.

13.
J Colloid Interface Sci ; 599: 453-466, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33962206

RESUMO

During the past few decades, photoelectrochemical (PEC) water splitting has attracted significant attention because of the reduced production cost of hydrogen obtained by utilizing solar energy. Significant efforts have been invested by the scientific community to produce stable ternary metal oxide semiconductors, which can enhance the stability and increase the overall production of oxygen. Herein, we present the ternary metal oxide deposition of ZnCo2O4 as a route to obtain a novel photocatalyst layer on BiVO4 to form BiVO4/ZnCo2O4 a novel composite photoanode for PEC water splitting. The structural, topographical, and optical analyses were performed using field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and UV-Vis spectroscopy to confirm the structure of the ZnCo2O4 grafted over BiVO4. A remarkable 4.4-fold enhancement of the photocurrent was observed for the BiVO4/ZnCo2O4 composite compared with bare BiVO4 under visible illumination. The optimum loading of ZnCo2O4 over BiVO4 yields unprecedented stable photocurrent density with an apparent cathodic shift of 0.46 V under 1.5 AM simulated light illumination. This is also evidenced by the flat-band potential change through Mott-Schottky analysis, which reveals the formation of p-ZnCo2O4 on n-BiVO4. The improvement in the PEC performance of the composite with respect to bare BiVO4 is ascribed to the formation of thin passivating layer of p-ZnCo2O4 on n-BiVO4 which improves the kinetics of interfacial charge transfer. Based on our study, we have gained an in-depth understanding of the BiVO4/ZnCo2O4 composite as high potential in efficient PEC water splitting devices.

14.
ACS Appl Mater Interfaces ; 13(35): 41517-41523, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428892

RESUMO

We introduce a simple and easy way to functionalize the surface of various carbonaceous materials through the ultraviolet light/ozone (UV/O3) plasma where we utilize the zero-, one-, and two-dimensional carbon frameworks. In a general manner, the lamps of a UV/O3 generator create two different wavelengths (λ = 185 and 254 nm); the shorter wavelength (λ = 185 nm) dissociates the oxygen (O2) in air and the longer wavelength (λ = 254 nm) dissociates the O3 and creates the reactive and monoatomic oxygen radical, which tends to incorporate onto the defects of the carbons. By tailoring the association and dissociation of the oxygen with various forms, carbon black, carbon nanofibers, and graphite flakes, chosen as representative models for the zero-, one-, and two-dimensional carbon frameworks, their structure can be oxidized, respectively, which is known as photochemical oxidation. Various carbons have their own distinctive morphology and electron transport properties, which are applicable for the lithium-sulfur (Li-S) cell. We, here, report on the improvement of electrochemical performance of the lithium/sulfur cell through such an efficient functionalization approach.

15.
J Colloid Interface Sci ; 584: 582-591, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129166

RESUMO

A hydrogen breath test is a non-invasive and safe diagnostic tool to explore the functional gastrointestinal disorders. For the diagnosis of small intestinal bacterial overgrowth syndrome as well as carbohydrate malabsorption such as fructose, lactose, and sorbitol malabsorption, a hydrogen breath test is considered one of the gold criterions. Since the more sensitive hydrogen sensor enables the more accurate prediction about the disease, many efforts have been to the development of the high performance H2 sensor. Herein, we fabricate the pn-junction type composite sensors using single wall carbon nanotube (SWCNT) and zinc oxide and thoroughly investigate their hydrogen sensing properties at various temperatures. We discuss the origin of sensing performance enhancement mechanism in the composite sensors, while the composite sensor with high H2 sensing performance, linearity, repeatability, and selectivity can be prepared.

16.
J Phys Chem C Nanomater Interfaces ; 124(13): 7082-7090, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32273937

RESUMO

Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid-state NMR spectroscopy is a powerful approach for gaining chemical and structural insights at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here, we employ for the first time metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material Li4Ti5O12. In addition for being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect that the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.

17.
Chem Commun (Camb) ; 55(97): 14609-14612, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31742270

RESUMO

Recently, great advances of the Li-S battery technology have enabled its penetration as the power source of mid- and large-sized devices, which require high energy and power density that cannot be achieved with Li-ion batteries. While the most successful Li-S battery operation is enabled by the tailoring of the sulfur composite cathode composite structure, the binder system has recently been considered as another important factor. We study the structural and electrochemical performance of sulfur cathodes prepared with two different binders. Enhanced battery performance is observed in the SBR/CMC-based electrode and its origin is scrutinized.

18.
ACS Appl Mater Interfaces ; 11(8): 8234-8241, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30706706

RESUMO

Fully "Erase-free" multi-bit operation was demonstrated in a W/HfO2/TiN-stacked resistive switching device. The term Erase-free means that a digital state in a multi-bit operation can be achieved without initializing the device resistance state when the device moves to another digital state. Because initializing the resistance state of a resistive switching device causes high energy consumption, omitting this sequence can achieve energy efficient multi-bit operation during rewriting of the resistance state of the device. Experimentally, an operational energy savings of up to 75% was confirmed. For stable and reliable Erase-free operation, several prerequisites are required, such as gradual resistance change with electric pulse stimuli during both writing and erasing, predictable operational voltages for certain resistance states, and high reliability of resistive switching. These prerequisites could be achieved by adopting a W top electrode in a W/HfO2/TiN-stacked resistive switching device. These results can pave the way to future nonvolatile memory applications.

19.
ACS Appl Mater Interfaces ; 11(4): 3823-3833, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30615410

RESUMO

Building a stable chemical environment at the cathode/electrolyte interface is directly linked to the durability of Li-ion batteries with high energy density. Recently, colloidal chemistry methods have enabled the design of core-shell nanocrystals of Li1+ xMn2- xO4, an important battery cathode, with passivating shells rich in Al3+ through a colloidal synthetic route. These heterostructures combine the presence of redox-inactive ions on the surface to minimize undesired reactions, with the coverage of each individual particle in an epitaxial manner. Although they improve electrode performance, the exact chemistry and structure of the shell as well as the precise effect of the ratio between the shell and the active core remain to be elucidated. Correlation of these parameters to electrode properties would serve to tailor the heterostructure design toward complete shutdown of undesired reactions. These knowledge gaps are the target of this study. Li1+ xMn2- xO4 nanocrystals with Al3+-rich shells of different thicknesses were synthesized. Multimodal characterization comprehensively revealed the elemental distribution, electronic state, and crystallinity in the heterostructures, which confirmed the potential of this approach to finely tune passivating layers. All of the modified nanocrystals improved the capacity retention while retaining charge storage compared to the bare counterpart, even under harsh conditions.

20.
Materials (Basel) ; 12(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609829

RESUMO

The properties of Al-doped SnOx films deposited via reactive co-sputtering were examined in terms of their potential applications for the fabrication of transparent and flexible electronic devices. Al 2.2-atom %-doped SnOx thin-film transistors (TFTs) exhibit improved semiconductor characteristics compared to non-doped films, with a lower sub-threshold swing of ~0.68 Vdec-1, increased on/off current ratio of ~8 × 107, threshold voltage (Vth) near 0 V, and markedly reduced (by 81%) Vth instability in air, attributable to the decrease in oxygen vacancy defects induced by the strong oxidizing potential of Al. Al-doped SnOx films maintain amorphous crystallinity, an optical transmittance of ~97%, and an adhesive strength (to a plastic substrate) of over 0.7 kgf/mm; such films are thus promising semiconductor candidates for fabrication of transparent flexible TFTs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa