Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(4): 2731-2741, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38411315

RESUMO

INTRODUCTION: Alzheimer's disease (AD) involves the complement cascade, with complement component 3 (C3) playing a key role. However, the relationship between C3 and amyloid beta (Aß) in blood is limited. METHODS: Plasma C3 and Aß oligomerization tendency (AßOt) were measured in 35 AD patients and 62 healthy controls. Correlations with cerebrospinal fluid (CSF) biomarkers, cognitive impairment, and amyloid positron emission tomography (PET) were analyzed. Differences between biomarkers were compared in groups classified by concordances of biomarkers. RESULTS: Plasma C3 and AßOt were elevated in AD patients and in CSF or amyloid PET-positive groups. Weak positive correlation was found between C3 and AßOt, while both had strong negative correlations with CSF Aß42 and cognitive performance. Abnormalities were observed for AßOt and CSF Aß42 followed by C3 changes. DISCUSSION: Increased plasma C3 in AD are associated with amyloid pathology, possibly reflecting a defense response for Aß clearance. Further studies on Aß-binding proteins will enhance understanding of Aß mechanisms in blood.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Amiloide , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Complemento C3 , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/líquido cefalorraquidiano
2.
Curr Issues Mol Biol ; 45(12): 9917-9925, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38132465

RESUMO

Autosomal recessive spastic ataxia in Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder caused by mutations in the sacsin molecular chaperone protein (SACS) gene. Since the first report from Quebec in 1978, many pathogenic ARSACS variants with significantly reduced chaperone activities have been reported worldwide in adolescents, with presumably altered protein folding. In this study, a novel SACS mutation (p.Val1335IIe, Heterozygous) was identified in a Korean patient in their 50s with late-onset ARSACS characterized by cerebellar ataxia and spasticity without peripheral neuropathy. The mutation was confirmed via whole exome sequencing and Sanger sequencing and was predicted to likely cause disease using prediction software. RT-PCR and ELISA showed decreased SACS mRNA expression and sacsin protein concentrations in the proband, supporting its implications in diseases with pathogenicity and reduced chaperone function from haploinsufficiency. Our results revealed the pathogenicity of the SACS Val1335IIe mutation in the proband patient's disease manifestation, even though the symptoms had a limited correlation with the typical ARSACS clinical triad, which could be due to the reduced chaperon function from haploinsufficiency. Furthermore, our study suggests that variants of SACS heterozygosity may have diverse symptoms, with a wide range of disease onsets for late-onset sacsinopathy.

3.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328387

RESUMO

Early-onset Alzheimer's disease (EOAD) is characterized by the presence of neurological symptoms in patients with Alzheimer's disease (AD) before 65 years of age. Mutations in pathological genes, including amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2), were associated with EOAD. Seventy-six mutations in PSEN2 have been found around the world, which could affect the activity of γ-secretase in amyloid beta processing. Here, a heterozygous PSEN2 point mutation from G to A nucleotide change at position 166 (codon 56; c.166G>A, Gly56Ser) was identified in a 64-year-old Korean female with AD with progressive cognitive memory impairment for the 4 years prior to the hospital visit. Hippocampal atrophy was observed from magnetic resonance imaging-based neuroimaging analyses. Temporal and parietal cortex hypometabolisms were identified using fluorodeoxyglucose positron emission tomography. This mutation was at the N-terminal portion of the presenilin 2 protein on the cytosolic side. Therefore, the serine substitution may have promoted AD pathogenesis by perturbing to the mutation region through altered phosphorylation of presenilin. In silico analysis revealed that the mutation altered protein bulkiness with increased hydrophilicity and reduced flexibility of the mutated region of the protein. Structural changes were likely caused by intramolecular interactions between serine and other residues, which may have affected APP processing. The functional study will clarify the pathogenicity of the mutation in the future.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Presenilina-1/genética , Presenilina-2/genética , República da Coreia , Serina/genética
4.
Nanomaterials (Basel) ; 14(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921909

RESUMO

Rapid advancements in nanotechnology have expanded its applications and synergistic impact on modern nanosystems. The comprehensive assessment of nanomaterials' safety for human exposure has become crucial and heightened. In addition to the characterization of cell proliferation and apoptosis, probing the implication of autophagy is vital for understanding the ramification of nanomaterials. Hence, HEK-293 kidney cells were employed to understand the changes in induction and perturbation of autophagy in cells by iron oxide (Fe3O4) and silica (SiO2) nanoparticles. Interestingly, Fe3O4 worked as a potent modulator of the autophagy process through its catalytic performance, which can develop better than that of SiO2 nanoparticles mechanism, stressing their therapeutic implication in the understanding of cell behaviors. The quantification of reactive oxygen species (ROS) was measured along with the process of autophagy during cell growth. This modulated autophagy will help in cell fate determination in complementary therapy for disease treatment, provide a clinical strategy for future study.

5.
Front Aging Neurosci ; 16: 1332455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384937

RESUMO

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic dysfunction and associated with abnormalities in the cholinergic system. However, the relationship between PD and cholinergic dysfunction, particularly in exosomes, is not fully understood. Methods: We enrolled 37 patients with PD and 44 healthy controls (HC) to investigate acetylcholinesterase (AChE) activity in CD9-positive and L1CAM-positive exosomes. Exosomes were isolated from plasma using antibody-coupled magnetic beads, and their sizes and concentrations were assessed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Subsequently, the AChE activity in these exosomes was analyzed in relation to various clinical parameters. Results: A significant decrease in AChE activity was observed in CD9-positive exosomes derived from patients with PD, whereas no significant differences were found in L1CAM-positive exosomes. Further analysis with a larger sample size confirmed a substantial reduction in AChE activity in CD9-positive exosomes from the PD plasma, with moderate diagnostic accuracy. The decrease in AChE activity of CD9-positive exosomes did not show an association with cognitive impairment but displayed a trend toward correlation with PD progression. Discussion: The reduction in AChE activity in CD9-positive exosomes suggests potential peripheral cholinergic dysfunction in PD, independent of the central cholinergic system. The observed alterations in AChE activity provide valuable insights into the association between cholinergic dysfunction and the pathogenesis of PD.

7.
Front Aging Neurosci ; 13: 665400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122043

RESUMO

Exosomes, which are small extracellular vesicles produced from various cell types, contain a variety of molecular constituents, such as proteins, lipids, and RNA. Recently, exosomal biomarkers have been investigated to probe the understanding and diagnosis of neurodegenerative disorders. Previous reports have demonstrated increased exosomal α-synuclein (α-syn) in patients with Parkinson's disease (PD) in comparison to healthy controls (HC). Interestingly, the cholinergic loss was revealed in the central and peripheral nervous systems in histopathology and molecular neuroimaging. Thereby, we simultaneously examined acetylcholinesterase (AChE) with α-syn as exosomal markers. Exosomes were isolated from the plasma of 34 FP-CIT PET proven patients with PD and 29 HC. Exosomal α-syn and AChE activity were quantified andthe relationship with clinical parameters was analyzed. Remarkably, exosomal AChE activity was significantly decreased in PD compared to HC (P = 0.002). Moreover, exosomal AChE activity in PD revealed a strong negative correlation with disease severity, including H&Y (P = 0.007) and UPDRS part III (P = 0.047) scores. By contrast, no significant difference in exosomal α-syn concentration was observed between groups. These results support the occurrence of cholinergic dysfunction in PD, and they could be implicated with disease progression, especially motor deficits. Exosomal AChE activity with advanced exosome isolation techniques may be a reliable biomarker for the early diagnosis and prognosis of PD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa